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Abstract

Language models are thriving, powering conversational agents that assist and empower humans
to solve a number of tasks. Recently, these models were extended to support additional modalities
including vision, audio and video, demonstrating impressive capabilities across multiple domains
including healthcare. Still, conversational agents remain limited in biology as they cannot yet fully
comprehend biological sequences. On the other hand, high-performance foundation models for
biological sequences have been built through self-supervision over sequencing data, but these need
to be fine-tuned for each specific application, preventing transfer and generalization between tasks.
In addition, these models are not conversational which limits their utility to users with coding
capabilities. In this paper, we propose to bridge the gap between biology foundation models and
conversational agents by introducing ChatNT, the first multimodal conversational agent with an
advanced understanding of biological sequences. ChatNT achieves new state-of-the-art results on
the Nucleotide Transformer benchmark while being able to solve all tasks at once, in English, and to
generalize to unseen questions. In addition, we have curated a new set of more biologically relevant
instructions tasks from DNA, RNA and proteins, spanning multiple species, tissues and biological
processes. ChatNT reaches performance on par with state-of-the-art specialized methods on those
tasks. We also present a novel perplexity-based technique to help calibrate the confidence of our
model predictions. Our framework for genomics instruction-tuning can be easily extended to more
tasks and biological data modalities (e.g. structure, imaging), making it a widely applicable tool
for biology. ChatNT is the first model of its kind and constitutes an initial step towards building
generally capable agents that understand biology from first principles while being accessible to
users with no coding background.

Introduction

Understanding how cells, tissues, and organisms interpret information encoded in the genome is of
paramount importance for advancing our comprehension of biology. The DNA sequence of an organ-
ism comprises all the instructions to specify RNAs and proteins, but also when and in which cellular
context these should be produced. Since the human genome was sequenced [1], the main focus has
been on identifying every genomic element, characterizing their function, and assessing the impact
of genetic variants on the different gene regulatory and cellular processes. Given the complexity of
biological sequences and processes, and the increasing volume of genomics data, several machine
learning and deep learning methods have been developed to address these questions by predicting
diverse molecular phenotypes with great accuracy [2, 3, 4]. These tasks include predicting the bind-
ing of proteins to DNA and RNA [5, 6], DNA methylation [7], chromatin features [8, 9, 10], regulatory
elements [11], 3D genome folding [12, 13, 14], splicing [15, 16], gene expression [17, 18, 10], mRNA
properties such as stability [19] and polyadenylation [20, 21], and protein properties such as melting
point [22].
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While supervised deep learning models have already significantly improved the predictive capabili-
ties on these tasks, their performance remains often limited due to the scarcity of labeled data, given
that labelling is time consuming and expensive. On the other hand, an exponentially increasing vol-
ume of raw genome data is becoming available thanks to the increase in throughput and reduced cost
of modern sequencing techniques, thus creating a significant opportunity for self-supervised deep
learning methods to train on such unlabeled data. Through learning-techniques such as masked- or
next-token prediction [23, 24, 25], with tokens representing one or several consecutive nucleotides,
deep learning models can build powerful foundation representations of the genome during this ”pre-
training” stage, aggregating correlations between nucleotides and larger sequence patterns into rich
high-dimensional vectors that capture known genomic elements and protein binding sites [26]. These
models can later exploit these rich representations, during a ”fine-tuning” stage, to learn faster and
reach better performance on supervised tasks, i.e. tasks where labels are available, despite data
scarcity. Recently, several such foundation models have been built in this fashion, showing that they
can be pre-trained on the genomes of hundreds of species before being fine-tuned to solve a large
collection of molecular phenotype prediction tasks [26, 27, 28, 29, 30, 31, 32].

This being said, the performance and application domain of current DNA foundation models re-
mains limited. In the current paradigm, foundation models require fine-tuning to each specific task
individually to produce accurate representations and predictions, and are thus better characterized
as narrow experts on specific tasks. This not only yields a deluge of different models as the number
of tasks increases, but also prevents any transfer between supervised tasks as well as to solve new
tasks in a zero-shot setting (i.e. without the need for further finetuning on some examples). There is
therefore a need to rethink the development of genomics Artificial Intelligence (AI) systems with the
goal of establishing general, unified models that capture the intricate relationships between all di-
verse biological sequences and functions. It has been shown in other fields such as natural language
processing (NLP) and computer vision that training on several tasks in parallel results in knowl-
edge transfer between tasks and improved accuracy and generalization [23, 24, 33, 34, 35]. In these
domains, English language has been shown to play a wider role: a universal interface for represent-
ing various tasks and instructions and helping guide the training of end-to-end multi-task models
[36, 37]. Transferring this type of approaches to biological data is a promising approach towards
developing a general model that can solve all genomics tasks of interest simultaneously and with
improved accuracy.

An additional important aspect of building a universal genomics AI system is its accessibility to dif-
ferent types of users. Most biologists do not know how to use current genomics models, let alone
how to program one themselves for a given task of interest. Such models are not conversational and
thus of limited utility in practice to users with no coding capabilities. Also here, language can play
an important role as a universal interface for a general-purpose AI assistant that can solve genomics
tasks through task instructions that can be explicitly represented in English language. For example,
the recent success of ChatGPT [38] and GPT-4 [39] has demonstrated the power of large language
models (LLMs) trained to follow human instructions, and how such tools can transform several in-
dustries due to their ease of use. We envision the same paradigm shift for genomics and biology once
we have ”ChatGPT-like” agents that are proficient in biological tasks.

To that end, we introduce in this work a novel approach to build foundation models for genomics.
Similarly to lines of works that emerged in NLP [36, 24, 25], and inspired by recent vision/language
multimodal models [40, 41, 42, 43, 44, 45, 46], we propose to formulate all supervised genomics
prediction tasks as text-to-text tasks and to build a multi-modal DNA/language agent, dubbed the
Chat Nucleotide Transformer (or ChatNT). ChatNT can be given one or several DNA sequences and
is prompted in English to solve all those tasks. This formulation allows us to express all tasks with
the same vocabulary, being here the concatenation of the English and DNA vocabularies, and to learn
to solve them by minimizing a unified objective, similar to GPT-like models [25, 47], allowing for
seamless new task integration and generalization. Formulating tasks in English is also an easy way to
provide additional meta-data information to the model, such as the species, the chromosome or the
cell type, that is also missing in most current DNA foundation models.
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ChatNT is built to act as a generalist genomics AI system - a unified model that can interpret mul-
tiple biological sequences and handle dozens of tasks in a conversational agent setting. To the best
of our knowledge, ChatNT is the first multimodal bio-sequence/English agent. We created the first
datasets of genomics instructions tasks with curated sets of questions and instructions in English for
diverse classification and regression tasks. We first show that ChatNT achieves a new state-of-the-art
on the Nucleotide Transformer benchmark [26]. We next evaluate ChatNT in additional biologically
relevant tasks that cover DNA, RNA and protein processes. ChatNT achieves state-of-the-art perfor-
mance across all tasks, matching the performance of several specialized models, such as APARENT2
for RNA polyadenylation [20, 21] and ESM2 for protein-related tasks [48], while being able to solve
a large collection of tasks at once and in English. Finally, its English conversational capabilities make
its use easier than other models, widening its accessibility to scientists with no machine learning
or computer science background. This framework for genomics instruction-tuning can be easily ex-
tended to new tasks or biological data modalities (e.g. sequencing experiments, imaging) without the
need for pre-training from scratch every time, making it a widely applicable tool for biology.

Results

ChatNT: a unified framework to transform DNA foundation models into conver-
sational agents to solve multiple tasks.

ChatNT is the first framework for genomics instruction-tuning, extending instruction-tuning agents
to the multimodal space of biology and biological sequences. Our framework is designed to be mod-
ular and trainable end-to-end. It combines (1) a DNA encoder model, pre-trained on raw genome
sequencing data and that provides DNA sequence representations; (2) an English decoder, typically
a pre-trained GPT-style LLM, to comprehend the user instructions and produce responses; and (3)
a projection layer that projects the representations extracted by the DNA encoder into the embed-
ding space of the input English words, such that both can be used by the English decoder (Fig. 1c;
see Methods). In contrast to most multimodal works (e.g. [40, 49]) that would typically freeze the
encoder and train only the projection, and sometimes the decoder, we decided in this work to back-
propagate the gradients in the encoder in addition to the projection to allow supervised knowledge
propagation at the DNA model level. The English decoder is kept frozen and therefore ChatNT ben-
efits from its entire initial conversational capabilities, ensuring these do not degrade during training.
In this work, we use the Nucleotide Transformer v2 (500M) model for the DNA encoder part [26] and
Vicuna-7b (instruction-fine-tuned LLaMA model with 7B parameters) for the English decoder part
[50] in order to build the conversational agent ChatNT. Keeping this modular architecture allows to
use constantly improving encoders and decoders in the future without changing the model architec-
ture.

To train and evaluate ChatNT, we converted datasets of genomics tasks into instructions datasets by
framing each task in English (Fig. 2; see Methods and respective results sections). We created for
every task a train and test file each containing the respective DNA sequences combined with curated
questions and answers in English. See Figure 1c for an example of question and answer for predicting
RNA degradation levels: ”User: Determine the degradation rate of the human RNA sequence @myseq.fna
on a scale from -5 to 5. ChatNT: The degradation rate for this sequence is 1.83.”, where the projected em-
beddings of the candidate DNA sequence are inserted at the @myseq.fna position. We keep the same
train/test splits as the original sources of each task, and use different questions for train and test to
assess the English generalization capabilities of the model. This allows to not only evaluate the agent
capability to generalize between DNA sequences but also its robustness to the English language used.
We also provide a novel and flexible way to interleave English and DNA sequences through the usage
of positional tags (@myseq.fna), allowing users to refer to several sequences in the same question.
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Figure 1: ChatNT, a conversational agent that can be prompted to solve a variety of biological tasks.
a. Illustration of the different categories of downstream tasks included during training. b. Statistics about
the number of English and DNA tokens available for each task in our genomics instructions dataset. English
question/answer instructions are tokenized with the LLaMA tokenizer [47] while DNA sequences are tokenized
using the Nucleotide Transformer tokenizer [26]. c. ChatNT approach to build a multimodal and multi-task
genomics AI system. ChatNT conversational agent can be prompted in English to solve various tasks given
an input question and nucleotide sequence. In this example, the user inputs a DNA sequence (fasta file) and
asks the agent to evaluate the degradation rate of the given RNA sequence. The question tokens are combined
with the projected DNA representations before passing through the English Language Model decoder. The pre-
trained decoder writes the answer through next-token prediction, in this case predicting the degradation rate of
the input sequence.

ChatNT is trained to solve all tasks simultaneously, with a uniform sampling over tasks per batch.
Multi-tasking is achieved by ChatNT by prompting in natural language, where the question asked
by the user will guide the agent towards the task of interest. Given a text prompt and one or multi-
ple DNA sequences as input, ChatNT is trained to minimize a unified objective for all tasks, which
takes the form of the cross-entropy loss between ChatNT predictions and the target answer tokens,
as in other instruction-finetuning works [51, 50, 52]. This single objective allows to learn seamlessly
across tasks without introducing conflicting gradients or scale issues coming from different objectives
and loss functions (e.g. Cross-Entropy for classification versus Mean Squared Error for regression).
In addition, it allows us to extend the model with additional tasks in the future without requiring
changes in the model architecture or training it from scratch. In summary, ChatNT provides a gen-
eral genomics AI system that solves multiple tasks in a conversational manner, thus providing a new
paradigm for genomics models.
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ATAGCATGCATGCATGCTAGCATGCTAGCTA
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human cells present in this
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and can you characterize
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Figure 2: Examples of ChatNT conversations on DNA, RNA and Protein tasks. For each conversation we show
the question from the user (white) and the answer of the agent (blue). The projected embeddings of the input
DNA sequences are incorporated in the question at the position of @myseq.fna.

In addition to seamlessly integrating multiple types of labeled and experimental data into a single
general foundation model, ChatNT is designed to be conversational to enable users to easily interact
with it and to use it without requiring a programming background (see examples in Fig. 2). We rely on
a frozen English language model, Vicuna 7B [50], that has been instruction fine-tuned from LLaMA
[47], ChatNT keeps all the intrinsic conversational capabilities of the language model. Interestingly,
we observed that as the training dataset used to build LLaMA already contained a large set of life
sciences papers, our agent is also capable to answer multiple questions about genomics such as defin-
ing regulatory elements like promoters and enhancers, zero shot i.e. without any additional training
data. Additionally, ChatNT can answer numerous non-biology related questions and solve tasks such
as summarizing or writing simple programming code. As our approach is general and builds on top
of any pre-trained English language model, ChatNT capabilities can improve organically with new
and more powerful open-sourced language models. While the conversational capability is an impor-
tant aspect of ChatNT but is already provided by the respective language model, we focused in this
work on demonstrating that the conversational agent ChatNT can solve a wide range of advanced
genomics tasks in English with high accuracy.
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ChatNT is the new state-of-the-art on the Nucleotide Transformer benchmark

Figure 3: ChatNT achieves a new state-of-the-art accuracy in the Nucleotide Transformer benchmark. a)
Average performance of ChatNT, ChatNT with no english-aware projection and 13 different genomics founda-
tion models across all 18 tasks of the Nucleotide Transformer benchmark [26]. Bar-plots display the mean MCC
over all tasks and the standard error of the mean. b) Radar plot depicting the performance of ChatNT in each
of the 18 tasks compared with specialized NTv2 models fine-tuned individually on each task.

In order to develop ChatNT and optimize its architecture we created an instructions version of the
Nucleotide Transformer benchmark [26] (Supplementary Table 1 and Methods). This collection of
genomic datasets is suitable for fast iteration during model experimentation as it contains a varied
panel of small-sized datasets and has been extensively evaluated in multiple studies of DNA founda-
tion models [26, 29]. We trained ChatNT to solve all 18 tasks at once and in English and evaluated
its performance on test set DNA sequences and questions.

We first used this benchmark to systematically compare the performance of ChatNT with two dif-
ferent projection architectures. The classical way of aggregating information from the encoder in
previous multimodal models is to use a trainable projection to convert the encoder embeddings into
language embedding tokens, which have the same dimensionality of the word embedding space in
the language model [40, 49, 41, 42]. In ChatNT we used the Perceiver resampler from Flamingo
[41] based on gated cross-attention as projection layer (Supplementary Fig. 1a). Using this projection
layer and finetuning both the DNA encoder and the projection on all 18 tasks, ChatNT obtained a
new state-of-the-art accuracy on this benchmark with an average Matthew’s correlation coefficient
(MCC) of 0.71, 2 points above the previous state-of-the-art Nucleotide Transformer v2 (500M) model
(Fig. 3a, Supplementary Fig. 2).

However, similar to all other projection layers [40, 49, 53], the current implementation of the Per-
ceiver resampler generates the same fixed set of embeddings for the encoder tokens independently
of the question asked, and therefore it needs to capture in this set of embeddings all relevant in-
formation for every downstream task. We hypothesised that this feature can create an information
bottleneck in genomics when scaling the model for multiple downstream tasks given the diversity of
potential sequences, from different lengths and species, and biological properties. Therefore, we de-
veloped an English-aware Perceiver projection that extracts representations from the input sequence
dependent on the English question asked by the user, which allows to leverage contextual informa-
tion encoded in the input DNA sequences that are relevant for the specific question (Supplementary
Fig. 1b; see Methods). We observed significantly improved performance by accounting for the ques-
tion when projecting the DNA embeddings into the English decoder space (average MCC of 0.77 vs
0.71; Supplementary Fig. 1c,d). This can be explained by the very context- and task-specific infor-
mation in DNA sequences that we must retain in order to tackle diverse genomics tasks. Since the
decoder remains frozen, the projection layer not only needs to bring the sequence embeddings into
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the embedding space of the English decoder, but also to perform the operations to extract the relevant
information from the embedding to answer the question. Our results show that making the projec-
tion aware of the question facilitates both aspects thus achieving a better performance and transfer
across tasks.

In summary, ChatNT with an English-aware projection (from now on just called ChatNT) achieves
a new state-of-the-art accuracy on this benchmark (average MCC of 0.77) in addition to solving all
18 tasks at once (Fig. 3a). Strikingly, ChatNT improves the average performance by 8 points over
the previous state-of-the-art Nucleotide Transformer v2 (500M) model, which was used as the DNA
encoder within ChatNT (average MCC of 0.77 vs 0.69; Fig. 3a,b). Our results demonstrate that a
single unified objective formulated in natural language triggers transfer learning between multiple
downstream tasks and helps deliver improved performance.

A new curated genomics instructions dataset of biologically relevant tasks

Although the Nucleotide Transformer benchmark [26] was very suitable for model experimentation
and to debug the system, it misses many tasks of great biological relevance in genomics related to
more complex biological processes as well as more recent experimental techniques and tasks that
involve quantitative predictions. Therefore we curated a second genomics instructions dataset con-
taining 27 genomics tasks framed in English derived from different studies that cover several reg-
ulatory processes (Supplementary Table 2 and Methods). These include tasks related to DNA (21
tasks), RNA (3) and protein sequences (3) from multiple species framed as both binary/multi-label
classification and regression tasks. The final instructions dataset contains a total of 605 million DNA
tokens, i.e. 3.6 billion base pairs, and 273 million English tokens (including an average of 1,000 ques-
tion/answer pairs per task) (Figure 1b).

This collection includes a non-redundant subset of tasks from the Nucleotide Transformer [26] and
the BEND [54] benchmarks, complemented with relevant tasks from the plant AgroNT benchmark
[55] and human ChromTransfer [56]. These benchmarks have been extensively used in the literature,
come from different research groups, and represent diverse DNA processes and species. These se-
lected tasks include binary and multi-label classification tasks covering biological processes related
to histone and chromatin features, promoter and enhancer regulatory elements, and splicing sites.

We further added state-of-the-art and challenging regression tasks related to promoter activity [55],
enhancer activity [11], RNA polyadenylation [20, 21] and degradation [19], and multiple protein
properties [57]. These are reference datasets in the respective fields and related to very complex
properties of biological DNA, RNA and protein sequences. All RNA and protein tasks are predicted
from the corresponding DNA and CDS sequences instead of the RNA and protein sequences, respec-
tively. Getting the matching DNA sequence is trivial for RNA sequences but more challenging for
protein sequences due to the complexity of codon usage. Therefore, we used the CDS annotations for
protein tasks curated at Boshar et al. [57].

See Figure 2 and 4 for examples of questions and answers for different types of genomics tasks used
in our dataset (see also Supplementary Fig. 3, 4, 5). For instance, a training example for an enhancer
classification task would be ”User: Is there an enhancer from human cells present in this sequence @my-
seq.fna, and can you characterize as weak or strong? ChatNT: Yes, a weak enhancer is present within the
DNA sequence that you provided.”, where the projected embeddings of the candidate DNA sequence
are inserted at the @myseq.fna position. Regression tasks are also framed in English and the agent
needs to write the digits corresponding to the requested quantity: for example ”User: Determine the
degradation rate of the mouse RNA sequence @myseq.fna on a scale from -5 to 5. ChatNT: The measured
degradation rate for this sequence is 2.4.” (see Methods for details on the quantitative scale). The loss is
equally computed as the cross-entropy loss between the predicted and the target answer tokens. For
performance evaluation, we extract the digits from each answer and test their correlation with the
ground-truth values.
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In summary, this curated set of tasks provides a general perspective of the capabilities and usefulness
of our model in different biological sequence domains. We train ChatNT as a general agent to solve
all 27 genomics tasks at once and in English, and compare its performance with the state-of-the-art
specialized model for each task (see Methods).

ChatNT achieves high performance on multiple tasks across different genomics
processes and species
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Figure 4: Examples of prediction performance and conversations for a subset of genomics, transcrip-

tomics, and proteomics tasks. a, d, e) Left: example of conversation for the respective binary or multi-label
classification task. Right: heatmap displaying the confusion matrix comparing the predicted labels of ChatNT
and observed labels. The performance metric is reported. b, c, f) Left: example of conversation for the respec-
tive regression task. Right: scatter-plot comparing the predictions of ChatNT and observed values. Pearson
correlation coefficient (PCC) is reported.

We first evaluated the performance of ChatNT on the 21 tasks related to different DNA processes
from yeast, plants, fly, mouse, and human. ChatNT is competitive with the performance of the differ-
ent specialized models that were fine-tuned directly on each of these individual tasks (Fig. 4a,b,d,e
and 5a,c). In particular, we obtained an improved performance on the detection of human enhancer
types. Still, we observed significantly reduced performance for enhancers from plant species when
compared with the state-of-the-art AgroNT model fine-tuned specifically on this task [55]. Since
AgroNT was pre-trained on genomes from 48 diverse plant species, improving the encoder used in
ChatNT might lead to improved performance on this type of tasks.
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As ChatNT solves the tasks in English, it can seamlessly handle binary and multi-label classifica-
tion tasks. By extracting the term predicted by ChatNT in the answer, we can quantify its predictive
performance. As we show for some examples in Fig. 4, ChatNT accurately identifies input sequences
with human or mouse promoters (Fig. 4a), with CpG sites methylated in human embryonic stem cells
(HUES64 cell line; Fig. 4d), and with splice acceptor and donor sites (Fig. 4e).

ChatNT is also able to solve quantitative tasks by writing the digits of the predicted score. We ob-
served competitive performance on predicting promoter activity in plants, namely tobacco leaves
(Fig. 4b) and maize protoplasts, but significantly reduced performance on Drosophila enhancer activ-
ity over the state-of-the-art DeepSTARR model [11] (Fig. 5a). Importantly, the distributions of the
predicted digits correlate well with the original scores (Fig. 4b). This capability to proficiently ad-
dress regression tasks is of paramount importance in biology, and is particularly significant in light of
the acknowledged limitations and unreliability of numerical processing in language models [58, 59].
Still, we observed a reduced average performance on regression tasks over classification ones, likely
due to the difference in complexity and classification tasks being more represented in the training set.
We assume that this might be solved by improving the balance between classification and regression
tasks during training, through either a weight loss or a task sampling frequencies curriculum [60].
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ChatNT solves transcriptomics and proteomics tasks

ChatNT is built with a flexible architecture that allows it to handle any type of biological sequence
that can be processed with our DNA encoder, the Nucleotide Transformer [26]. To showcase its
generalization, we have included in the new genomics instructions dataset three RNA and three pro-
tein regression tasks (Supplementary Fig. 4, 5). These include predicting RNA polyadenylation and
degradation rates as well as different protein features. Examples of conversations used for model
training are: ”User: What is the measured polyadenylation ratio of the proximal site of the RNA sequence
@myseq.fna in human HEK293 cells, considering a range from 0 to 1? ChatNT: That sequence has a
polyadenylation ratio of the proximal site of 0.69.” and ”User: Specify the melting point of the protein with
the given coding sequence (CDS) @myseq.fna within the 0 to 100 range. ChatNT: This protein demon-
strates a melting point of 80.81.”. The performance of ChatNT was compared to the state-of-the-art
specialized models APARENT2 for polyadenylation [21], Saluki for RNA degradation [19], and ESM2
for the protein tasks [48] (Supplementary Table 2).

Overall, we observed good performance for ChatNT on the test sets of the 6 RNA and protein tasks,
with Pearson correlation coefficients (PCCs) between 0.62 and 0.91 (Fig. 4c,f, 5a). ChatNT outper-
formed the specialized models for the prediction of proximal polyadenylation site ratio (PCC of 0.91
vs 0.90) and protein melting points (PCC of 0.89 vs 0.85). Regarding the RNA degradation tasks
in human and mouse, ChatNT obtained a PCC of 0.62 and 0.63, ten points below the specialized
Saluki model [19] (PCC of 0.74 and 0.71). ChatNT also obtained competitive performance with the
state-of-the-art protein language model ESM2 [48] on the two other protein tasks related to protein
fluorescence and stability. Although ChatNT cannot yet outperform every specialized model on RNA
and protein tasks, we show that it can already handle such tasks and achieve high performance using
the DNA foundation model Nucleotide Transformer as a DNA encoder. ChatNT’s flexible architec-
ture allows to plug-in different encoders, such as language models specialized for RNA [61, 62, 63, 64]
and protein domains [48], which should reduce the gap to specialized deep learning models in the
transcriptomics and proteomics fields and improve the capabilities and generalization of ChatNT to-
wards a unified model of biology.
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Assessing the confidence of ChatNT answers
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ChatNT is built to assist and augment scientists and researchers in their daily research. As such, its
performance and reliability are paramount. However, in contrast to standard machine learning mod-
els that return probabilities or quantitative scores, ChatNT directly answers questions, preventing
the user to get a sense of its confidence and thus reducing its practical value for sensitive applica-
tions. This is an important challenge and common to all current conversational agents [38, 39, 40].
To address this, we introduce a novel way to assess the confidence of our agent for binary classifi-
cation tasks. Instead of generating directly answers to the binary classification question for a given
sequence, we compute the model perplexity for that question over examples of both positive and
negative answers. We make sure that these selected answers were not included in the model training
dataset. Those perplexity values towards positive and negative answers are then used to derive logits
and probabilities for each class for the candidate question. This method allows us to derive proba-
bilities from ChatNT for each question example, similar to standard classifiers, and we refer to it as
perplexity-based classifier (Fig. 6a).

Computing probabilities enables us to assess the calibration of the model, i.e. the correlation between
the predicted probability, its confidence, and the accuracy of its prediction. We say that a model is
well calibrated when a prediction of a class with confidence p is correct 100p % of the time. We
computed the ChatNT perplexity-based probabilities for all binary classification tasks. In Figure 6b-
d we show an example of a calibration plot based on the predictions for the chromatin accessibility
task. We observe that our model is well calibrated for low- and high-confidence areas, but less in
medium-confidence ones. For instance, examples predicted with a probability of 0.9 are correctly
predicted 90% of the time while examples predicted with probability 0.5 are correctly predicted only
25% of the time. To improve this, we show that we can calibrate our model by fitting on the train-
ing set a Platt’s model [65], to improve the confidence of the model across all ranges of predictions
(Fig. 6b-d). This calibration step is performed for all binary classification tasks. Overall, we achieve
the same performance for ChatNT across tasks using these perplexity-based predictions (Fig. 6e) but
with improved calibration. As a consequence, our approach can accurately measure the predictive
performance of a language model in addition to effectively assessing its uncertainty level. This tech-
nique, while being general, should also be beneficial to other language model fields.

Discussion

We presented ChatNT, the first multimodal conversational agent that can handle DNA, RNA and
protein sequences and solve multiple biologically relevant downstream tasks. We built and curated
the first datasets of genomics instructions tasks including binary and multi-labels classification and
regression tasks spanning different species and genomics processes. Tasks relative to transcriptomic
and proteomic processes were also included to demonstrate the versatility and generality of this
approach across domains. ChatNT achieves a new state-of-the-art on the Nucleotide Transformer
benchmark [26] and demonstrates a performance on par with specialized models on our new set of
27 tasks. Importantly, unlike conventional approaches requiring a specialized model for each task,
ChatNT solves all tasks within a unified model in addition to offering a simple and natural chatbot
interface for people to use the model. We also introduced a new technique to probe the confidence
of language models for binary classification tasks and used it to calibrate them when needed. Alto-
gether, ChatNT is the first proof that natural language LLMs can be extended to process bio-sequence
modalities, displaying not only conversational capabilities but also answering accurately multiple bi-
ologically relevant questions.

To extract the complex information from DNA sequences that is needed to solve all tasks in a single
unified model, we introduced a novel architecture based on the Perceiver resampler [41] to resample
and project DNA embeddings into the natural language embedding space. We identified an informa-
tion bottleneck issue that arises from the diversity of tasks, species and biological processes encoded
in DNA sequences, and we showed how to solve it by conditioning the projection on the question
asked. This conditioning allows the projection module to extract from the DNA embeddings the
right amount of information to solve the task at hand, as we show by the improved performance over
a projection module that is not conditioned on the question.
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In this work, we decided to focus on situations where a user, such as a researcher or scientist, is in-
terested in detecting molecular phenotypes or computing quantitative properties for a given DNA
sequence. While we believe this encompasses an already significant number of practical use-cases, it
would be interesting to expand the agent capabilities to handle other typical bioinformatics pipelines.
Such pipelines could include calling tools to compute statistics about the sequences, aligning the se-
quences to a reference database to compute multiple sequence alignments, query external databases
for additional information about the sequences, or to recursively call the ChatNT model over a FASTA
file containing multiple sequences and generating a summarized table results with its corresponding
analysis. This is supported by the success of external tools in large language models such as Tool-
former [66], LLaVA-Plus [49], geneGPT [67] or GPT-4 [39]. Such pipelines could also benefit from
ChatNT’s capability to handle several sequences at the same time in order to reduce the inference
compute cost. Replacing ChatNT’s current English decoder by larger models and/or models fine-
tuned using Reinforcement Learning Human Feedback (RLHF) such as Llama2-chat 70B [52] could
also help extending the model capabilities in these directions as well as improving its overall useful-
ness.

The capabilities of ChatNT have been demonstrated for DNA sequences using a pre-trained DNA
foundation model, the Nucleotide Transformer [26]. As shown in our experiments, working with
DNA sequences allows to tackle tasks not only in genomics but also transcriptomics and proteomics,
the latter using the corresponding CDS region. However, our approach could be easily extended to
integrate encoders from other omics modalities such as RNA [61, 62, 63, 64] and protein [48, 68]
language models to work natively with RNA and aminoacid sequences. Through our positional tag
system that supports multiple sequences, one could simply add an arbitrary number of encoders and
train their respective projections to combine different omics and modalities within the same ques-
tions. We envision that such approach could expand even further the capabilities and performance
of our model by achieving superior transfer learning across modalities.

This work serves as the first proof-of-concept that it is possible to build multimodal bio-sequence/
English conversational agents that can solve advanced, biologically relevant tasks, and is meant to
lay a first set of foundations to build future highly-capable agents that understand biological se-
quences and principles. Similar to the developments in NLP [69, 52, 70, 71] and multimodal models
[72], we expect new capabilities such as zero-shot performance to emerge through developments on
two main fronts: (1) scaling the number of tasks by including examples from diverse biological pro-
cesses, tissues, individuals and species [73, 74]; and (2) integrating more data modalities, such as
RNA and protein sequences, imaging data and health records from individuals. When such capabil-
ities emerge, it will be of the highest importance to carefully assess model safety and robustness, for
instance through red teaming [75]. As such, ChatNT represents an important step along the trajectory
towards general purpose AI for biology and medicine [76].
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Methods

1 ChatNT model

1.1 Architecture

The ChatNT is a multimodal agent that takes as input one or multiple DNA sequences and an En-
glish prompt and returns a distribution over English words that is used to auto-regressively produce
an answer in English. We introduce a DNA English token placeholder <DNA> that is added in the
input English prompt for the user to refer to the DNA sequence. The architecture is also extended
to handle several DNA sequences. In this case, each DNA sequence is processed independently by
the DNA encoder and the input English prompt is expected to contain as many DNA English token
placeholders as sequences are inputted.

The ChatNT architecture is made of three parts: a pre-trained DNA encoder, a projection model that
projects the DNA embeddings into the English tokens embedding spaces and a pre-trained English
decoder. While our architecture is general and could work with any choice of DNA Encoder and En-
glish decoder, we decided to use the pre-trained Nucleotide Transformer v2 (500M parameters) [26]
and Vicuna-7b (instruction fine-tuned Llama model with 7B parameters) [50] models, respectively.
During training, we keep the English decoder frozen and update only the weights of the DNA en-
coder and the projection model. The projection model is initialized from scratch at the beginning of
the training.

The DNA Encoder processes the DNA sequence and returns one embedding vector per input token,
one token representing a nucleotide 6-mers in the case of the Nucleotide Transformer model. We
note L the number of nucleotides in the DNA sequence and N the number of DNA tokens (with

roughly N ≈ L
6

). Every input DNA sequence was padded if needed until a final length of 2,048 to-

kens, representing approximately 12kb. As the output embedding dimension of the DNA encoder
can be different from the words embedding dimensions of the English language model we first use
a dense neural network to project each DNA token embedding to the English word dimension. In
a second phase, we use a Perceiver resampler architecture [41] that uses cross-attention between the
projected DNA tokens embeddings and learnable queries, to re-sample the N DNA tokens embed-
ding to K embedding vectors (Supplementary Fig. 1a). We have adapted this Perceiver resampler to
include an additional cross-attention step between the learnable queries and the English question in
order to extract context-dependent representations from the DNA sequence (Supplementary Fig. 1b).

On the other hand, the English prompt is tokenized and English tokens embeddings are produced
for each tokens. The K resampled DNA embedding vectors are then inserted in place of the DNA
sequence placeholder tokens in the English input sequence. In the case of multiple input DNA se-
quences, these operations are applied consecutively and independently for each DNA sequence. We
experimented with several values of K in practice and we observed that low values such as 1 or 4 are
not enough for the DNA encoder to impact the behavior of the frozen English decoder. We found
K = 64 to provide a good trade-off between the input length of the English decoder and the perfor-
mance in practice.

During inference, the DNA encoder embeddings for the DNA sequences are computed only once.
The inference is done autoregressively by predicting sequentially each new token until an end of
sequence token is predicted. The key, queries and values of the English decoder are cached during
generation to avoid computing unnecessary operations. We use temperature sampling with a tem-
perature of τ = 0.001.

The whole codebase of the ChatNT has been developed in Jax [77] using Haiku [78] for neural net-
works implementation. All trainings were performed on a cluster of 8 GPU H100 instances and
evaluations of the model can be done in a single GPU A100-80gb. All trained parameters from the
DNA encoder and perceiver projection as well as optimizer accumulators and all frozen parameters
from the English decoder are stored and updated in float32.
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1.2 Training

ChatNT was trained using Adam optimizer [79] with lr = 3e−5 and default settings for other hyperpa-
rameters: β1 = 0.9, β2 = 0.999, ϵ = 1e−8, ϵroot = 0.0. We used gradient clipping of 1 and accumulated
gradients over a batch size of 65,536 tokens, equivalent to 256 samples. We used an uniform sam-
pling over tasks per batch such that each batch has the same proportion of samples per task. We
trained the model on the 27-task dataset for 2B tokens (7.8M samples) on a cluster of 8 GPU H100
over 4 days.

1.3 Hyperparameters

Below we describe all hyperparameters for the different parts of ChatNT.

DNA encoder Perceiver Resampler English decoder
Number of layers 29 3 32
Number of heads 16 20 32
Embedding dimension 1024 4096 4096
Feed forward dimension 4096 11008 11008
Activation type swish GeLu swiGlu
Positional encoding type RoPe RoPe RoPe
Total number of parameters 500M 800M 7B
Input tensor shape (1, 2048) (1, 2048, 1024) (1, 1024, 4096)
Output tensor shape (1, 2048, 1024) (1, 64, 4096) (1, 1024, 32000)
Float Precision Float32 Float32 Float32
Initialization Pre-trained (NT-v2-500m) From scratch Pre-trained (vicuna-7b)
Update Updated Updated Frozen

1.4 Evaluation

Evaluating the performance of ChatNT can be done in a single GPU A100 in batches of 32 samples
and takes 1:40 minutes to generate a maximum of 40 tokens per sample (13 tokens per second). For
each task, we evaluated ChatNT on upmost 5,000 sampled test samples and report the metric used
in the respective benchmark study (Supplementary Table 1 and 2).

2 Genomics instructions datasets

2.1 Instructions for the Nucleotide Transformer benchmark

We created an instructions version of the Nucleotide Transformer benchmark [26] (Supplementary
Table 1). To convert the DNA sequence datasets into instructions datasets, we curated dozens of
English questions and answers for each task and sampled a question/answer pair per input DNA
sequence. We used the DNA token placeholder <DNA> in the question when referring to the in-
put DNA sequences. The answer contains the classification label for the respective input sequence.
We converted all 18 binary/multi-label classification datasets into diverse question/answer instruc-
tions for each DNA sequence. We provide for each task train and test sets containing different DNA
sequences as well as different questions to assess the performance and English generalization capa-
bilities of the model. We kept the same train and test sets as the original dataset.

2.2 New curated genomics instructions dataset of biologically relevant tasks

The new genomics instructions dataset created here contains a set of 27 tasks framed in English de-
rived from different studies (more details in Supplementary Table 2). It covers several regulatory
processes related to DNA (21 tasks), RNA (3) and protein sequences (3). These tasks are derived
from multiple species, including human, mouse, fly and plants. Among all tasks there are 15 binary
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classification, 2 multi-label classification and 10 regression tasks. The number of training examples
per task ranges from 5.5K to 3M. See Supplementary Information for all details on the data refer-
ences and processing for each specific task.

We converted the DNA sequence datasets into instructions datasets as described above for the Nu-
cleotide Transformer benchmark. The answer contains the classification label or regression score (up
to decimal cases) for the respective input sequence. In addition to simple examples with a single turn
of question/answer with a single sequence, we also added more complex examples with multiple
turns with consecutive questions that can be related or not, and exchanges where the question refers
to multiple sequences. The final genomics instructions dataset contains a total of 605 million DNA
tokens, i.e. 3.6 billion base pairs, and 273 million English tokens (including questions and answers).

We obtain for each task train and test sets containing different DNA sequences as well as different
questions to assess the performance and English generalization capabilities of the model.

2.3 Baselines for the genomics tasks

For each of the 27 genomics tasks, we compared the performance of ChatNT with the state-of-the-art
method for the respective dataset. These included the convolutional neural networks DeepSTARR
[11], ChromTransfer [56], APARENT2 [21] and Saluki [19]; and the fine-tuned foundation models
based on Nucleotide Transformer [26], agroNT [55], DNABERT [27] and ESM2 [48]. We used different
performance metrics per task to follow the same metric used in the respective studies. Details on the
baseline method and performance metric per task can be found in Supplementary Table 2. Most
baseline performance metrics were directly retrieved from the respective papers. Only for ESM2 we
had to rerun them on the updated dataset versions.

3 Calibration of ChatNT predictions

We developed an approach to assess and calibrate the confidence of ChatNT answers for binary clas-
sification tasks.

For a given binary classification task, we select N examples of positive and negative answers each,
selected from the respective task’s test set. We note these examples respectively ypos

i and yneg
i where

0 ≥ i > N . Then, for a given question x and DNA sequence s, we compute the average perplexity
of the model over the positive and negative examples respectively. We denote these two values as
pp

pos
θ (x,s) and pp

neg
θ (x,s), respectively, where θ represents the ChatNT weights tensor. We compute

them as follow:

pp
pos
θ (x,s) =

1
N

N−1∑
i=0

exp

∑
j

pθ
(
(ypos

i )j |(x,s,y
pos
i )

)
log

(
pθ

(
(ypos

i )j |(x,s,y
pos
i )

))
where (ypos

i )j denotes the j-th token of answer ypos
i and pθ

(
(ypos

i )j |(x,s,y
pos
i )

)
returns the probability

of token j given the question, DNA sequence and tokens from the answers up to the j-th one accord-
ing to ChatNT. The negative perplexity values are computed similarly over negative answers.

Those perplexity values towards positive and negative answers represent a measure of how well the
model aligns the question to those answers. We inerpret them directly as logits and use a softmax
transformation to compute probabilities for the respective class for the input question. This method
allows to derive probabilities from ChatNT for each question example. We applied this approach to
1,000 test examples per task.

To calibrate those predictions, we first compute perplexity-based probabilities to 10,000 training ex-
amples as our calibration dataset and use them to fit a Platt’s model [65]. More specifically, we use
logistic regression from scikit-learn [80] as the calibrator model and trained it with the following
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parameters with an inverse regularization factor C = 0.1 and with the lbfgs solver. The logistic re-
gression model learns to map the perplexity-based probabilities from ChatNT onto a more accurate
scale. We then apply this model to calibrate the probabilities of the 1,000 test examples mentioned
above.

As metrics, we computed both Area under the ROC Curve (AUROC) and MCCs for both the original
perplexity-based probabilities and the calibrated ones.
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Supplementary Information

Genomics instructions dataset

Histone modifications

As representatives for yeast histone datasets, we used as tasks the presence of H3 and H4 histones
along the yeast genome derived from Chip-Chip experiments [81]. The processed data for the yeast
H3 and H4 tasks was retrieved from the Nucleotide Transformer benchmark [26]. We used MCC as
performance metric per histone type.

As representatives for human histone datasets, we used the abundance of the histone modifications
H3K4me1, H3K4me3 and H3K27ac along the human genome in the model cell line K562. Training
and test DNA sequences and respective positive and negative labels were obtained from the BEND
benchmark study [54]. Each input sequence is of length 512bp and is assigned a positive label if
a histone bound to it carries the respective mark. We reduced the size of the dataset for practical
reasons by downsampling the negative sequences to twice the number of positive sequences. We
used AUROC as performance metric per histone modification.

Chromatin accessibility

We retrieved an example of a chromatin accessibility prediction task from ChromTransfer [56], se-
lecting data from the cell line HepG2 since it was the most challenging task in the dataset. We used
their fine-tuning dataset based on ENCODE data with input sequences of 600bp. Positive sequences
were defined as regions that were only accessible in that cell line among the six cell lines considered
in the study (n=31,211 for HepG2), while negatives (n=54,995) were sampled from the positives of
the other cell lines and other regulatory regions from ENCODE. We used the F1 score as performance
metric.

DNA methylation

We collected DNA methylation processed data for the human embryonic cell line HUES64 from the
BEND benchmark study [54]. Each input sequence is of length 512bp and contains a CpG site at
the center that is either methylated or not. Similarly to histone marks, we reduced the size of the
dataset by downsampling the negative sequences to twice the number of positive sequences. We used
AUROC as performance metric similar to the BEND benchmark.

Human and mouse regulatory elements

We retrieved the dataset of human and mouse promoter sequences used in the Nucleotide Trans-
former benchmark [26], originally derived from DeePromoter [82]. We considered sequences of
300bp that span 249bp upstream and 50bp downstream of transcription start sites. This resulted
in 29,597 promoter regions, of which 3,065 contain and 26,532 do not contain a TATA-box motif. We
used the same negative sets, ending up in a total of 59,194 sequences. We used these sequences for
three different binary classification datasets: classifying sequences as promoters (NT promoter all),
promoters without a TATA-box motif (NT promoter no tata), and promoters with a TATA-box motif
(NT promoter tata).

For human enhancer prediction tasks we used the enhancer dataset from the Nucleotide Transformer
benchmark [26], curated priory at [83]. This dataset contains enhancer (strong or weak) and non-
enhancer sequences of 200bp each. We derived two tasks from this dataset: a binary classification
task for predicting enhancers (strong and weak combined; NT enhancers) and a multi-label clas-
sification task for classifying a sequence as a strong enhancer, weak enhancer or not an enhancer
(NT enhancer types). Each dataset contained 14,968 training sequences and 400 test sequences.

Multi-species splice sites

We collected the splice site prediction tasks from the Nucleotide Transformer benchmark [26]. These
were based on two original datasets.
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We used a dataset originally from SpliceFinder [84] that contains a training set (n=27,000) of 400bp
sequences that contain donor, acceptor, or non-splice sites detected in human genes. The test set
(n=3,000) contains similar types of sequences from human but also additional species: mouse, rat,
fly and zebrafish. This dataset was transformed in a multi-label classification task with labels being
acceptor, donor or none (NT splice sites all).

We used two additional binary classification tasks for the predictions of donor (NT splice sites donors)
or acceptor (NT splice sites acceptors) splice sites. This task was derived from the Spliceator dataset
[16], based primarily on the G3PO database, which included sequences from 147 phylogenetically
diverse organisms (ranging from protists to primates, including humans). All sequences were 600bp
and were labeled as positive if they included a splicing site at the center (i.e. an acceptor or donor site,
respectively). The NT splice sites donors dataset contained 19,775 training and 2,198 test sequences
while the NT splice sites acceptors dataset contained 19,961 training and 2,218 test sequences.

Plant enhancers

We retrieved the binary classification task for predicting enhancers in the cassava plant (Manihot
esculenta) seedlings from the AgroNT benchmark [55]. This is a balanced and GC-matched dataset
of 1000bp sequences that contain or do not contain enhancers. Sequences from every chromosome
except 9 and 17 were used for training (n=16,852) while sequences from the chromosome 17 were
used for testing (n=812).

Plant lncRNAs

For the binary classification task of predicting plant long non-coding RNAs (lncRNA), we used the
dataset of Sorghum bicolor from the AgroNT benchmark [55]. This dataset contains lncRNA sequences
with a length smaller than 6,000bp labelled as positives and length- and GC-matched mRNA se-
quences labelled as negatives. We used the same training (8,654) and test (734) sets.

Plant promoter strength

The promoter strength dataset from plants was derived from the AgroNT benchmark [55]. This
dataset contains 170bp promoter sequences from three different plant species whose strength was
tested in tobacco leaves and maize protoplasts. We used the resultant quantitative values for the two
different promoter strength regression tasks.

Enhancer activity

For tasks related to enhancer activity we considered the DeepSTARR dataset [11]. The dataset is
composed of 484,052 DNA sequences of length 249bp, each measured for their quantitative enhancer
activity towards a developmental or a housekeeping promoter in Drosophila melanogaster fruitfly S2
cells. We considered these two measures as two regression tasks and used the same training (402,304)
and test (41,184) set sequences.

RNA polyadenylation

We retrieved the data for the RNA polyadenylation task from APARENT2 [21]. This dataset was
originally derived from Bogard et al. [20] and we applied the same processing as in APARENT2
to make the training data more uniform. It contains 185bp sequences with randomized proximal
polyadenylation signal (PAS) sequences that were tested within 12 diverse 3UTR contexts in an MPRA
experiment. The objective is to predict the total isoform proportion of a far-away competing distal
PAS. This regression task contains 3.3 million training sequences and 80,000 sequences testing.

RNA degradation

We retrieved the data for the human and mouse RNA degradation tasks from Saluki [19]. This dataset
contains processed half-lives for different human and mouse RNA sequences. We used the cross-
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validation dataset from fold 0 and removed RNA sequences longer than 12kb. This resulted in 10,377
training and 1,297 testing human sequences, and 10,989 training and 1,374 testing mouse sequences.

Protein tasks

We retrieved three different protein tasks related to protein fluorescence, stability and meting point,
all predicted from the respective CDS sequence, from Boshar et al. [57].

Protein fluorescence: Estimating the fitness landscape of protein variants which are many mutations
away from the wildtype sequence is one of the core challenges of protein design. This task evaluates
a model’s ability to predict log-fluorescence of higher-order mutant green fluorescent protein (GFP)
sequences. Original data is from an experimental study of the GFP fitness landscape [85]. Inspired
from the TAPE and PEER benchmarks [86, 87], we restrict the training set to amino-acid sequences
with three or fewer mutations from parent GFP sequences, while the test set is all sequences with
four or more mutations.

Protein stability: It is important for models trained on diverse sequences to be able to accurately
predict a small region of the fitness landscape. This task evaluates how well models predict stability
around a small region of high-fitness sequences. Coding sequences and labels were taken from the
supplementary material of the original experimental study [88]. Labels indicate a peptide’s ability to
maintain structure at increasing levels of protease, which serves as a proxy for stability.

Protein melting point: Predicting protein melting point can be a challenging task as even single
residue mutations can have large impacts [89]. Melting point prediction is a sequence-level regression
task that evaluates a model’s ability to predict a measure of melting temperature. We follow the same
“mixed” splits described in FLIP [22] which seek to avoid over-emphasis of large clusters. Sequences
are clustered at 20% identity with 80% of clusters assigned to the train dataset and 20% of clusters
assigned to the test dataset.
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Supplementary Tables

Task name Biological process Species No. classes/regression Sequence length (bp) N (train/test) Dataset source
H3 histone Histones yeast 2 500 13140/1461 NT-benchmark
H4 histone Histones yeast 2 500 13468/1497 NT-benchmark
H3K4me1 Histones yeast 2 500 28509/3168 NT-benchmark
H3K4me2 Histones yeast 2 500 27614/3069 NT-benchmark
H3K4me3 Histones yeast 2 500 25953/2884 NT-benchmark
H3K9ac Histones yeast 2 500 25003/2779 NT-benchmark

H3K14ac Histones yeast 2 500 29743/3305 NT-benchmark
H3K36me3 Histones yeast 2 500 31392/3488 NT-benchmark
H3K79me3 Histones yeast 2 500 25953/2884 NT-benchmark

H4ac Histones yeast 2 500 30685/3410 NT-benchmark
Promoters Promoters human/mouse 2 300 53276/5920 NT-benchmark

TATA promoters Promoters human/mouse 2 300 5509/621 NT-benchmark
Non-TATA promoters Promoters human/mouse 2 300 47767/5299 NT-benchmark

Splice sites Splice sites human/mouse/rat/fly/zebrafish 3 400 27000/3000 NT-benchmark
Splice donors Splice sites 147 species 2 600 19775/2198 NT-benchmark

Splice acceptors Splice sites 147 species 2 600 19961/2218 NT-benchmark
Enhancers Enhancers human 2 200 14968/400 NT-benchmark

Enhancer types Enhancers human 3 200 14968/400 NT-benchmark

Supplementary Table 1: Information about all tasks in the Nucleotide Transformer benchmark [26].
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Supplementary Figures
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Supplementary Figure 1: Perceiver projection. a) Projection without cross-attention to English question. b) Pro-
jection with cross-attention to english question used in final ChatNT. c) Radar plot comparing Chat-NT with the two
projections on the 18 textualized tasks of the Nucleotide Transformer benchmark [26]. MCC performance per task
is shown. d) Average performance across the 18 tasks. Bar-plots display the average MCC over all tasks and the
standard error of the mean.
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Supplementary Figure 2: Performance of ChatNT, ChatNT with no english-aware projection and 13 different
foundation models on the 18 tasks from the Nucleotide Transformer benchmark [26].
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Is there a TATA promoter
in human or mouse cells
within this nucleotide
sequence @myseq.fna?

No, the promoter region of 
the sequence does not
have a TATA box motif.

AGTAAAACGATGCATCGTAGCTAGCACGATC

myseq.fna

promoter

Is there an enhancer 
active in human cells 
present in this sequence 
@myseq.fna?

No, there is no enhancer 
element in the nucleotide 
sequence.

TTCTCGGCAGGGCTCTCCGGGCGGCACTGA

myseq.fna

Enhancer

Yes, there is a donor 
splice site located in 
the sequence.

Are there any human 
acceptor or donor splice 
sites located in this 
sequence @myseq.fna?

CACTCACATCCAGGAAGGTAGTCCCATGCGT

myseq.fna

Splice Site

TCGTAAGCTAGCATCGATCGATCGATAGCATC

myseq.fna

H3K4me3

Is the @myseq.fna
associated with accessible
chromatin in human
hepatoma HepG2 cells?

No, this sequence is not in
ccessible chromatin in
hepatoma HepG2 cells.

ACTGAGTCGATCGATCGATCGATCGATCGAT

myseq.fna

closed chromatin

Can an enhancer from
cassava plant seedlings
be found within this DNA
 sequence @myseq.fna?

Yes, the sequence contains
an enhancer in cassava
plant seedlings. 

ATGCTAGCGAGGATACCAGCTACGTAGCATGC

myseq.fna

Enhancer

Is there any indication that
this sequence of Sorghum
bicolor @myseq.fna
might contain a lncRNA?

No, there is no lncRNA
within this sequence of
Sorghum bicolor.

ATCGATGCATGCTAGCTAGCATCGATCGATGC

myseq.fna

The promoter strength of
that sequence in maize
protoplasts is 2.9.

What is the promoter
strength of the sequence
@myseq.fna in plant maize
protoplasts from -10 to 10?

ATCGATGCATGCAAGCTAGCTATGCATGCAT

myseq.fna

Promoter

Within -10 to 10, what is the
measured promoter strength
of sequence @myseq.fna
in plant tobacco leaves?

The promoter strength of
that sequence is 0.3 in
plant tobacco leaves. 

GACTAACGATCGAATCGATCGATGCAATGCAT

myseq.fna

Promoter

Determine the developmental
enhancer activity score of the
given @myseq.fna sequence
from Drosophila melanogaster
S2 cells within -10 to 10.

That sequence has a
developmental enhancer
activity score of 7.8.

TTCTCGGCAGGGCTCTCCGGGCGGCACTGA

myseq.fna

Enhancer

The housekeeping
enhancer activity of that
sequence is 0.2.

What is the housekeeping
enhancer activity of the DNA
sequence @myseq.fna from
Drosophila melanogaster S2
cells, between -10 and 10?

ATCGATCGATCGTAGCATGCATGCATGCATGC

myseq.fna

Yes, this sequence is
marked by H3K4me3 
in leukemia K562 cells.

Is this sequence 
@myseq.fna marked 
by histone modification 
H3K4me3 in human 
myelogenous leukemia 
K562 cells? 

Yes, that CpG site is
methylated in human
embryonic stem cells.

Is there methylation at the
cpg site in the middle of
this sequence @myseq.fna
in human embryonic
stem cells? 

ATGCATGCTAGCATACGATCGATGCATGCATAC

myseq.fna

M

Supplementary Figure 3: Examples of conversations included in ChatNT training data for different genomics

tasks.
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This RNA sequence has
a polyadenylation ratio of
the proximal site of 0.3.

Assess the polyadenylation
ratio of the proximal site
of this RNA sequence
@myseq.fna in human
HEK293 cells on a scale
from 0 to 1.

ACGTATCGATGCTAGCTAGCTACGATTCGCTA

myseq.fna

This sequence has a
degradation rate of 4.8.

What is the degradation rate
exhibited by the given
mouse RNA sequence
@myseq.fna, measured
within the range of -5 to 5?

TTCTCGGCAGGGCTCTCCGGGCGGCACTGA

myseq.fna

The degradation rate for 
this sequence is 1.83.

Determine the degradation 
rate of the human RNA 
sequence @myseq.fna
on a scale from -5 to 5.

TTCTCGGCAGGGCTCTCCGGGCGGCACTGA

myseq.fna

Supplementary Figure 4: Examples of conversations included in ChatNT training data for different RNA tasks,

using the respective complementary DNA sequence.

This protein demonstrates
a fluorescence level of 2.3.

What is the fluorescence
level exhibited by the
protein with this given CDS
sequence @myseq.fna,
measured within the range
of -5 to 5?

ACGTATCGATGCTAGCTAGCTACGATTCGCTA

myseq.fna

CDS

This protein exhibits a 
stability of 4.05.

What is the measured
melting point of the protein
with this CDS sequence
@myseq.fna, considering
a range from 0 to 100?

TTCTCGGCAGGGCTCTCCGGGCGGCACTGA

myseq.fna

CDS

This protein exhibits a 
stability of 4.05.

Determine the stability of 
the protein whose CDS 
sequence is @myseq.fna 
on a scale from -5 to 5.

TTCTCGGCAGGGCTCTCCGGGCGGCACTGA

myseq.fna

CDS

Supplementary Figure 5: Examples of conversations included in ChatNT training data for different protein tasks,

using the respective CDS sequence.
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