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Abstract

Foundation models have achieved remarkable success in several fields such as natural language
processing, computer vision and more recently biology. DNA foundation models in particular are
emerging as a promising approach for genomics. However, so far no model has delivered granular,
nucleotide-level predictions across a wide range of genomic and regulatory elements, limiting its
practical usefulness. In this paper, we build on our previous work on the Nucleotide Transformer
(NT) to develop a segmentation model, SegmentNT, that processes input DNA sequences up to
30kb length to predict 14 different classes of genomics elements at single nucleotide resolution. By
utilizing pre-trained weights from NT, SegmentNT surpasses the performance of several ablation
models, including convolution networks with one-hot encoded nucleotide sequences and models
trained from scratch. SegmentNT can process multiple sequence lengths with zero-shot generaliza-
tion for sequences of up to 50kbp. We show improved performance on the detection of splice sites
throughout the genome and demonstrate strong nucleotide-level precision. Because it evaluates all
gene elements simultaneously, SegmentNT can predict the impact of sequence variants not only on
splice site changes but also on exon and intron rearrangements in transcript isoforms. Finally, we
show that a SegmentNT model trained on human genomics elements can generalize to elements
of different species and that a trained multispecies SegmentNT model achieves stronger general-
ization for all genic elements on unseen species. In summary, SegmentNT demonstrates that DNA
foundation models can tackle complex, granular tasks in genomics at a single-nucleotide resolution.
SegmentNT can be easily extended to additional genomics elements and species, thus representing
a new paradigm on how we analyze and interpret DNA. We make our SegmentNT-30kb human and
multispecies models available on our github repository in Jax and HuggingFace space in Pytorch.

Introduction

The intersection of genomics research and deep learning methods is profoundly changing our ability
to understand the information encoded in each of the 3 billion nucleotides in the human genome
and to accurately assess their influence with respect to different gene-regulatory activity layers, rang-
ing from regulatory elements and transcriptional activation to splicing and polyadenylation [1, 2].
Sequence-based machine learning models trained on large-scale genomics data capture complex pat-
terns in the sequence and can predict diverse molecular phenotypes with great accuracy. Recently,
convolutional neural networks have demonstrated superior performance over other architectures
across most sequence-based problems [3, 4, 5, 6, 7, 8, 9, 10, 11], sometimes combined with LSTMs
[12, 13, 14, 15] or transformer layers [16, 17].

Most genomics models are built with a focus on only one specific task where one task is to anno-
tate that a gene segment belongs to a specific group of genomic elements, for example detecting
the presence of promoter elements in a given input sequence [18] or the binding of transcription
factors [8]. Given the diversity and complexity of the different gene-regulatory activity processes,
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models that can tackle different types of tasks simultaneously will be easier to adopt by the com-
munity and should also obtain higher performance on each task by leveraging shared knowledge
between tasks. Models compatible with different type of tasks have emerged using either multi-
task supervised training schemes from scratch [5, 3, 19, 16, 17] or making use of large pre-trained
DNA foundation models that are afterwards finetuned towards specific tasks [20, 21, 22, 23, 24, 25].
This last approach in particular is very promising for genomics given the ability of such foundation
models to be trained on unlabeled data (e.g. raw genomes or experimental sequencing data), creat-
ing general-purpose representations capable of solving a multitude of downstream tasks, similarly
to what has been observed in other fields such as natural language processing and computer vision
[26, 27, 28, 29, 30].

A second key feature of most genomics models trained on certain tasks, such as detecting promoter
elements in an input sequence, is their limited resolution, usually predicting a single probability or
quantitative score for the whole candidate sequence [18] or low-resolution continuous signals av-
eraged across windows of 100–200 base pairs [16]. While framing such tasks as classification has
practical advantages, this formulation has its limits in practice as we are interested in knowing
precisely where elements are located in the sequence. In addition, it does not make use of addi-
tional information related to the spatial position of such elements. Models that make predictions at
nucleotide-resolution were shown to improve performance and recover better features over previous
deep learning classification approaches on tasks related to transcription factor binding [8], chromatin
accessibility [31, 32] and RNA polyadenylation [10]. Developing models that can solve multiple tasks
and at this nucleotide-level resolution is thus a promising avenue for the field.

Here we aim to train a model to predict the location of several types of genomics elements in a se-
quence at single-nucleotide resolution, both improving the model detection performance but also
providing more refined annotations and predictions for an input sequence. Given the similarities be-
tween localizing elements at nucleotide resolution in a DNA sequence and localizing objects in images
at pixel resolution, usually referred to as segmentation task [33, 34, 35], we adopted a segmentation
architecture that proved useful in that field. More specifically, we built a DNA segmentation model,
the Segment-Nucleotide Transformer (SegmentNT), that combines the pre-trained DNA foundation
model Nucleotide Transformer (NT) [22] and a 1D U-Net [33] architecture, and trained it to pre-
dict the location of 14 types of human regulatory and gene elements in input sequences up to 30kb
at single-nucleotide resolution. We show that SegmentNT achieves high nucleotide accuracy for all
elements and generalizes to input sequences up to 50kb. We further finetuned our best SegmentNT-
30kb model on multiple species and show improved generalization to unseen species.

To the extent of our knowledge, no model capable of predicting element locations at the nucleotide
level for different sorts of elements, including gene and regulatory elements, has been developed so
far, except for acceptor and donor splice sites identification [36, 37] or cross-species gene annotation
[12]. Given the complexity of this task, this work demonstrates the benefit of leveraging pre-trained
DNA foundation models over specialized methods trained from raw DNA sequences, showcasing the
power of foundation models to tackle complex tasks in genomics and at single-nucleotide resolution.

Results

SegmentNT: finetuning Nucleotide Transformer for segmentation of DNA se-
quences at nucleotide resolution

SegmentNT is a DNA segmentation model that combines the pre-trained DNA foundation model
Nucleotide Transformer (NT) [22] and a segmentation head to detect elements at different scales
(Fig. 1a). As segmentation head we make use of a 1D U-Net architecture that downscales and upscales
the foundation model embeddings of the input DNA sequence (Fig. 1b; see also Linder et al.[17] for
a recent use-case of U-Net in genomics). This architecture is trained end-to-end on a dataset of ge-
nomic annotations to minimize a focal loss objective [34] to deal with element scarcity in the dataset
(see Methods).
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Figure 1 - Segment-NT localizes genomics elements at nucleotide resolution
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Figure 1: SegmentNT localizes genomics elements at nucleotide resolution. a) The SegmentNT neural net-
work architecture consists of a pre-trained DNA encoder (here Nucleotide Transformer (NT) [22]) and a segmen-
tation head (here a U-Net). The output are probabilities for each genomics element at nucleotide resolution. b)
As segmentation head we use a 1D U-Net architecture with 2 downsampling and 2 upsampling convolutional
blocks with matched U-Net connections. We added the dimensions of each layer. c) Performance of SegmentNT
trained on 3kb and 10kb sequences on 14 types of genomics elements. We used as metric the Matthews cor-
relation coefficient (MCC). d) Representative example of annotations and predicted probabilities of the 14 types
of genomics elements at the NOP56/IDH3B gene locus located in the test set. Gene isoforms with respective
exons and introns, as well as promoter and enhancer regulatory elements are shown. e) Comparison of MCC
performance between SegmentNT and different architectures on 3kb input sequences. The number of param-
eters of each model in millions (M) is shown. f) Average MCC performance of the different architectures across
the 14 elements.
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To train SegmentNT we curated a dataset of annotations at nucleotide-level precision for 14 types of
genomic elements in the human genome derived from GENCODE [38] and ENCODE [39], includ-
ing gene elements (protein-coding genes, lncRNAs, 5’UTR, 3’UTR, exon, intron, splice acceptor and
donor sites) and regulatory elements (polyA signal, tissue-invariant and tissue-specific promoters
and enhancers, and CTCF-bound sites) (Supplementary Fig. 1; see Methods). Since these element
annotations can overlap, SegmentNT predicts the probability of belonging to each of the genetic el-
ements at nucleotide level. For example, in different gene transcript isoforms the same DNA region
can be considered an exon or an intron, enhancers can also be found in gene regions, and polyA sig-
nals are usually in the gene’s 3’UTRs. In addition, here we used the canonical definition of exons
as any part of a gene that can be present in the final mature RNA after introns have been removed
by RNA splicing, thus also overlapping with 5’ and 3’UTRs. This allows the prediction of every ge-
nomics element independent of the other predictions. The annotation of all promoter and enhancer
regions in the human genome was derived from the latest registry of candidate cis-regulatory ele-
ments by ENCODE [40]. It contains 790k enhancers and 34k promoters grouped by their activity in
different tissues (Supplementary Fig. 1c).

We first trained a model to segment these distinct 14 genomics elements in input DNA sequences
of 3kb (SegmentNT-3kb). This model was further finetuned on 10kb input sequences (SegmentNT-
10kb) to extend its input length. This was achieved by initializing SegmentNT-10kb from the best
checkpoint of the SegmentNT-3kb model for a more efficient training and length-adaptation. For a
given input sequence, these models make 42,000 and 140,000 predictions, respectively, each being
the probability of a given nucleotide to belong to a genomics element type. Model training, valida-
tion and performance evaluation were performed on different sets of chromosomes from the human
genome to ensure no data leakage between the different sets in order for the test set to provide a
robust evaluation of model performance. SegmentNT-3kb demonstrated high accuracy in localizing
these elements to nucleotide precision, showing a Matthews correlation coefficient (MCC) on the test
set above 0.5 for exons, splice sites, 3’UTRs and tissue-invariant promoter regions (Fig. 1c). LncRNA
and CTCF-binding sites were the most difficult elements to predict, with test MCC values below 0.1.
We observed superior performance of the model in sequences of 10kb (average MCC of 0.43) com-
pared with 3kb (0.38), in particular for protein-coding genes, 3’UTRs, exons and introns, suggesting
that these elements depend on longer sequence contexts (Fig. 1c).

To further evaluate predictive performance, we inspected regions of the held-out test chromosomes.
Evaluating SegmentNT-10kb on a 10kb window that covers the gene NOP56 on the positive strand
and the end of the gene IDH3B on the negative strand shows that it accurately predicts the different
genic elements of each gene (Fig. 1d). SegmentNT correctly predicts both genes as protein-coding,
their 5’UTR and 3’UTR positions, their splice sites and exon-intron structure, and also the polyA sig-
nals. In addition, SegmentNT captures the promoter region of NOP56, both the tissue-specific and
tissue-invariant ones. This region also contains multiple enhancers and some of those are correctly
predicted by the model. Still, although our global performance metric for enhancers is good (MCC of
0.27 for tissue-specific and 0.19 for tissue-invariant for SegmentNT-10kb), we observe that enhancer
predictions are more noisy. This could be related to their higher sequence complexity and diversity,
and we expect that grouping them by cell type-specific activity should further improve model per-
formance (see Discussion).

Using Nucleotide Transformer as a pre-trained DNA encoder is essential for effi-
cient training and to achieve top performance

We next evaluated our model architecture and the importance of using the NT pre-trained foundation
model as a DNA encoder. We compared the performance of SegmentNT with three different model
architectures, using 3kb input sequences for a simpler comparison (see Methods). We removed the
NT DNA encoder and trained two 1D U-Net architectures that take one-hot encoded DNA sequences
directly as input instead of the NT embeddings. One with the same 63M parameters of the head
of SegmentNT and a larger model with an additional downsampling/upsampling block featuring a
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total of 252M parameters. We selected for each model the checkpoint with the highest performance
on the validation set and evaluated all on the same test set sequences. These two U-Net architectures
demonstrated substantially reduced performance across all elements, with an average MCC of 0.07
(66M) and 0.11 (250M) compared with 0.38 for SegmentNT-3kb, demonstrating the value of using a
pre-trained DNA encoder (Fig. 1e,f). We note that the largest U-Net architecture used here (252M) is
around half the parameter size of SegmentNT (563M) with a size comparable to the Enformer [16].

To test the benefit of pretraining the NT foundation model, we trained a model version with the same
architecture as SegmentNT but using a randomly initialized NT DNA encoder model, rather than
the pre-trained one. We first note that while for SegmentNT-3kb we observed model convergence
after 20M training sequences (10B tokens), the version with random initialized NT showed much
slower convergence and have not converged yet even after 68M training sequences (34B tokens), a
training more than three times longer. In addition, even after this longer training, performance of
the randomly initialized model (average MCC 0.15) was substantially lower than SegmentNT-3kb
(0.38) across all 14 genomics elements (Fig. 1e,f). In summary, SegmentNT demonstrates the value of
DNA foundation models for solving challenging tasks in genomics such as localizing different types
of genomics elements at a single nucleotide resolution.

SegmentNT outperforms alternative approaches in predicting regulatory elements
with nucleotide-precision

We next focused on predicting regulatory elements and evaluated alternative approaches. To our
knowledge there are no models that can predict the location of regulatory elements in an input se-
quence at nucleotide resolution. We considered two approaches that could be used to tackle this
problem: sliding a binary classifier over the input 10kb sequence and using the Enformer [16] chro-
matin predictions as a surrogate for regulatory elements. For a more direct comparison with our
model, we used as binary classifiers the Nucleotide Transformer models [22] finetuned on promoter
or enhancer sequences (see Methods). We compared these approaches for the prediction of tissue-
invariant promoters and tissue-specific enhancers on 10kb input sequences as these were the classes
with the highest sequence predictive value (Fig. 1c).

Figure 2 - Comparison with promoter and enhancer baselines
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Figure 2: Comparison between SegmentNT and alternative segmentation approaches for promoter and

enhancer predictions. a) Precision-Recall Area Under the Curve (PR-AUC) performance for sliding a binary
promoter classifier, Enformer and SegmentNT for segmenting tissue-invariant promoters. b) MCC performance
for sliding a binary enhancer classifier and SegmentNT for segmenting tissue-specific enhancers. c) Inference
times on a 10kb sequences between Segment-NT, sliding a similar-size binary classifier model and Enformer.

On predicting promoters at nucleotide precision, SegmentNT-10kb outperformed both approaches
(Fig. 2a,b). Using the promoter finetuned model from NT [22] and sliding it through each 10kb
sequence yielded very low performance, which can be related with the different set of promoter se-
quences used for training such model. To use the Enformer, we calculated the predictions of DNA
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accessibility for 7 different cell lines for each 10kb sequence at its original 128bp resolution bins and
averaged to get a more robust DNA regulatory activity metric. Despite the different approach and
dataset, this resulted in a good performance of 0.21 Precision-Recall Area Under the Curve (PR-AUC)
for the prediction of promoter regions, but still well below SegmentNT-10kb with a PR-AUC of 0.56
(Fig. 2a). For predicting enhancers we compared the NT model finetuned on human enhancers [22]
and followed the same sliding window approach. Here the performance was better than for pro-
moters, with an MCC of 0.17, but again SegmentNT-10kb achieved much better performance at 0.27
(Fig. 2b).

In addition to being a novel approach for predicting regulatory elements and achieving state-of-the-
art performance, SegmentNT is also much faster on inference. Our SegmentNT-10kb model segments
the 14 genomics elements in an input 10kb sequence (meaning 140,000 predictions) in 0.16 millisec-
onds. This inference time is about 100x faster than running the Enformer model (18 milliseconds)
and 5000x faster than sliding a similar-size binary classifier model over the sequence (1 second) (all
times using Jax code and in a single A100 GPU; Fig. 2c). We note that for Enformer we had to pad the
10kb sequences for inference, since the original model predicts scores for 114,688bp.

SegmentNT generalizes to sequences up to 50kb

We next investigated how to extend the sequence context length of SegmentNT, motivated by the
improved results observed for SegmentNT-10kbp over SegmentNT-3kbp (Fig. 1c). However, NT uses
rotary positional embeddings (RoPE; [41]) which was set to support sequences up to 12kb during
its pre-training. As such, and given the periodic nature of RoPE encoding, using NT directly on se-
quences longer than 12kb, whether for finetuning or inference, would yield poor performance. To
address this problem, we explored recent approaches that have been proposed for extending con-
texts of RoPE models by converting the problem of length extrapolation into one of ”interpolation”.
Specifically, we employ a context length extension method first formally described in [42], where the
frequency used in RoPE embeddings is re-scaled to account for longer sequences (see also [43, 44]).
This approach can be used for extending the context length of SegmentNT during training to train
it on sequences longer than 12kb but also for performing inference with SegmentNT models on se-
quences longer than the ones seen during training. We investigated both scenarios below.

We implemented context length extension in NT and trained two additional SegmentNT models
that segment the 14 genomics elements in DNA sequences of 20kb (SegmentNT-20kb) and 30kb
(SegmentNT-30kb) (see Methods). Evaluation on the same test chromosomes showed consistent im-
provements in performance with increased sequence length, in particular for the segmentation of
protein-coding genes, 3’UTRs, exons and introns (Fig. 3a). The model with the best performance
across all elements was SegmentNT-30kb with an average MCC of 0.46 (Fig. 3b).

Since it is computationally expensive to finetune SegmentNT on even longer sequence lengths, we
tested if we could leverage context length extension to evaluate a model pre-trained on a given length
on longer sequences. We tested this approach on the SegmentNT-10kb model and evaluated it with
or without context length extension on the prediction of sequences up to 100kb from the same test
chromosomes (Fig. 3c, Supplementary Fig. 2). Context length extension substantially improved the
performance of the model on longer sequences, in particular on 100kb where the original model
showed very poor performance (average MCC of 0.26 vs 0.07, respectively).

This motivated us to more systematically test how far our different SegmentNT models could be ex-
tended. To address that, we evaluated the performance of all trained SegmentNT models (3kb, 10kb,
20kb and 30kb) on input sequence lengths between 3 and 100kb using context length extension in-
terpolation when needed. When averaging the performance across 14 elements, this revealed that
the model trained on the longest context length (SegmentNT-30kb) achieved the best results when
evaluated in all context lengths, including shorter sequences (Fig. 3d, Supplementary Fig. 3a,b). We
observed top performance for 50kb input sequences (average MCC of 0.47; Fig. 3d) and a drop in
performance for sequences longer than 50kb, although the model still has good performance on se-
quences of 100kb (0.45; Supplementary Fig. 3a). These results highlight the flexibility of SegmentNT
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Figure 3 - Zero-shot generalization of Segment-NT across multiple sequence lengths
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Figure 3: Adaptation and zero-shot generalization of SegmentNT across multiple sequence lengths. a)

Performance of SegmentNT trained on 3kb, 10kb, 20kb and 30kb sequences on 14 types of genomics elements.
We used as metric the MCC. b) Average MCC performance of the different models across the 14 elements. c)

Context-length extension allows to rescale SegmentNT-10kb to 100kb sequences. Average MCC performance
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Average MCC performance across the 14 elements for the different SegmentNT models per input sequence
length. e) Representative example of annotations and predicted probabilities of the 14 types of genomics ele-
ments for a 50kb region at the TMEM230/PCNA/CDS2 gene locus located in the test set. Gene isoforms with
respective exons and introns, as well as promoter and enhancer regulatory elements are shown.
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and how it can be applied to sequences of different lengths. We note that the SegmentNT-30kb
model when segmenting the 14 genomics elements in an 50kb input sequence makes 700,000 pre-
dictions at once (14 x 50,000), thus providing a very rich segmentation output. See an example of the
SegmentNT-30kb predictions for a 50kb locus in the test set with three overlapping genes (Fig. 3e).

The results of the model extension per genomic element type also reveal their different sequence-
dependencies (Supplementary Fig. 3c). Protein-coding gene was the element more dependent on
longer sequence contexts, achieving its top prediction performance when evaluating 70kb sequences
(MCC of 0.75, compared with 0.42 for 3kb and 0.58 for 10kb; Fig. 3e). We observed similar patterns
for most elements, including introns (MCC of 0.6 for 90kb, compared with 0.31 for 3kb and 0.44 for
10kb). Splice sites were less dependent on longer contexts and showed minor improvements between
3kb (acceptor MCC: 0.71, donor: 0.72) and longer contexts (acceptor: 0.74 at 10kb and 0.75 at 60kb,
donor: 0.75 and 0.76) (Supplementary Fig. 3a). These results highlight how different biological prop-
erties have specific dependencies on different sequence contexts.

Segment-NT accurately predicts splice sites and mutations

Figure 4  - Segment-NT achieves state-of-the performance on splice site prediction
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Figure 4: Segment-NT achieves state-of-the performance on splice site prediction. a) Representative exam-
ple of gene annotations and predicted probabilities for splicing elements by SegmentNT-30kb and SpliceAI at the
EBF4 gene locus located in the test set. Gene isoforms with respective exons and introns, as well as promoter
and enhancer regulatory elements are shown. SpliceAI mispredictions are highlighted with stars. b) Perfor-
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set. We used as metric the PR-AUC. c) Performance of SpliceAI and SegmentNT-30kb for splice acceptor and
donor detection as well as exon and intron prediction on SegmentNT’s whole chromosome test set. We used
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One of the main nucleotide-level tasks in genomics that has been tackled by previous models is
splice site detection, where SpliceAI is considered state-of-the-art [36]. We first compared our best
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SegmentNT-30kb with the specialized SpliceAI-10kb model on detecting splice donor and acceptor
nucleotides on a gene from our test set (EBF4; Fig. 4a). SegmentNT correctly predicts all exons and
introns in addition to all splice sites, including the ones of the alternative exon at the gene start.
When comparing both models we observe that SpliceAI predicts all existent splice sites but overpre-
dicts additional sites (see red stars in Fig. 4a).

For a systematic comparison, we evaluated each model in both SpliceAI’s test set and our test set
given their differences. Specifically, SpliceAI was trained and tested solely on pre-mRNA transcripts
from protein-coding genes, without intergenic sequences, and with transcript sequences always in
the respective positive strand. In contrast, our training and test sets are more general and contain the
whole DNA sequence of the respective chromosomes, including protein-coding genes and lncRNAs
in both positive and negative orientation.

SegmentNT-30kb achieves comparable performance to SpliceAI on SpliceAI’s test set: PR-AUC for
acceptor sites of 0.93 vs 0.96, and for donor sites of 0.93 vs 0.94, respectively (Fig. 4b). The result is
the same if using only 10kb input sequences, the length used for SpliceAI training (PR-AUC acceptor:
0.92 vs 0.94, donor: 0.92 vs 0.87, Supplementary Fig. 4a). On SegmentNT’s whole genome test set
our model achieves substantially improved performance when considering all genes (acceptor: 0.75
vs 0.48, donor: 0.76 vs 0.42) or only the ones in the positive orientation (acceptor: 0.76 vs 0.70, donor:
0.77 vs 0.62; Fig. 4c). As expected given its training data constraints, SpliceAI cannot predict splice
sites when the gene is in the negative orientation, while SegmentNT maintains the same performance
(acceptor: 0.74 vs 0.00, donor: 0.75 vs 0.00). Similar improvements were observed when consider-
ing 10kb sequences as input (Supplementary Fig. 4b). Overall, SegmentNT accurately detects splice
donor and acceptor sites in both strands in any given input DNA sequence.

Another difference to SpliceAI is that SegmentNT also predicts the position of exons and introns.
This can only be achieved with SpliceAI by combining the splice donor and acceptor predictions a
posteriori into exon and intron segments. We use SpliceAI to predict the position of exons and in-
trons and compare with the segmentation predictions of SegmentNT. Here, SegmentNT also showed
improved performance (Fig. 4c).

This prediction of splice sites together with exon and intron segments by SegmentNT also allows for
the direct prediction of potential transcript isoforms for a given DNA sequence. Given the accuracy
of SegmentNT’s predictions, we next tested if it could evaluate the effect of sequence variants on
isoform structures. We used data from an experimental saturation mutagenesis splicing assay of the
exon 11 of the gene MST1R, flanked by constitutive exons 10 and 12 and respective introns (data
from Braun, Simon, et al. [45]; see Methods). This dataset contains a library of almost 5,800 ran-
domly mutated minigenes of ∼700nt, where for each minigene variant it was evaluated the splicing
of the alternative exon 11 in the respective mRNA molecules. We used this data to test if SegmentNT
could predict the impact of those sequence variants on the respective splicing and transcript isoforms.

As a first check, SegmentNT correctly predicts this minigene as protein-coding, and the respective
locations of all splice sites, the three exons and the two introns (Supplementary Fig. 5a). We next
evaluated sequence variants with different experimentally measured impacts in the minigene tran-
scripts. In Supplementary Figure 5b we show a minigene variant that leads to higher exon 11 in-
clusion, which is correctly predicted by SegmentNT- note the stronger exon prediction compared to
the wildtype sequence, accompanied by stronger flanking intron and splice site predictions. In Sup-
plementary Figure 5c we show a minigene variant where the exon is skipped with high frequency.
SegmentNT correctly predicts the loss of splice sites and of the respective exon, with higher predic-
tion of an intron at its place. Systematic correlations across all minigene variants revealed a strong
agreement between the exon predictions by SegmentNT and the inclusion of the alternative exon
11 (PCC: 0.24; Supplementary Fig. 5d-g). These results show that the segmentation capabilities of
SegmentNT can be used to predict complex gene rearrangements directly from the sequence, which
should be a useful tool for the interpretation of sequence and structural variants that can affect gene
regulation and disease.
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Zero-shot generalization of SegmentNT across species

We next explored how SegmentNT trained on human genomics elements could generalize to other
species (Fig. 5a). Gene annotations for more distant, less-studied species are less accurate, while
annotations of regulatory elements such as promoters and enhancers are very scarce. Thus, models
that can predict these elements for different species hold great potential. In addition, comparison of
predictions across species should provide insights about the evolutionary constraints of each element.

For this analysis, we selected 17 additional species and for each one curated a dataset of annotations
for the 7 main genomic elements available from Ensembl [46], namely protein-coding gene, 5’UTR,
3’UTR, intron, exon, splice acceptor and donor sites (see Methods). This allows us to evaluate the per-
formance of the human model in each species on the 7 element types, while for the other 7 elements
our predictions might be informative of potential regulatory regions. Similar to the human datasets,
each dataset was split in train, validation and test chromosomes. We selected our best model trained
on the human 14 genomics elements, SegmentNT-30kb, and evaluated it on each species test set.

We observe high zero-shot performance of the human SegmentNT-30kb model across species for
exon and splice sites, correlating with their high evolutionary conservation (Fig. 5b,c). For the other
elements the performance was good for related species like gorilla and macaque, but dropped for
more evolutionary-distant animals. This shows that the SegmentNT-30kb model can generalize to
some extent to other species, but that the performance depends on the evolutionary distance of the
genomics elements and species.

Multispecies SegmentNT model shows improved species generalization

Since gene elements have evolved and therefore their sequence determinants might differ between
species, we trained an additional, multispecies model (SegmentNT-30kb-multispecies) by finetuning
the human SegmentNT-30kb model on the genic annotations of 5 selected species: mouse, chicken,
fly, zebrafish and worm (see Methods). The remaining 12 species were kept as held-out test set species
for comparing the generalization capabilities of the human and multispecies models. We note that
since most training species have limited annotation of regulatory elements, we focused this multi-
species model only on genic elements and therefore it should not be used for the prediction of reg-
ulatory elements. The performance of the SegmentNT-30kb-multispecies model improved quickly
during finetuning, leveraging its knowledge of human elements. We observed an improved perfor-
mance across species for the SegmentNT-30kb-multispecies model over the human SegmentNT-30kb
model (Fig. 5d), showing that gene elements diverged between species and it is necessary to adjust
the model accordingly.

Finally, we evaluated both human and multispecies SegmentNT-30kb models on the held-out set
of 12 species, splitting them in two groups: 7 with an estimated divergence time from human of
less than 100 million years (human-close species) and 5 more distant (more than 100 million years;
human-distant; data from TimeTree) (Supplementary Fig. 6). The human model generalizes well
for unseen species and showed better performance for human-close (average MCC of 0.62) than
human-distant species (average MCC of 0.49; Fig. 5e,f). SegmentNT-30kb-multispecies demon-
strated similarly good performance on human-close species (average MCC of 0.64) and improved
performance on human-distant species (average MCC of 0.57) over the human model (0.49; Fig. 5e,f).
This SegmentNT-30kb-multispecies model is thus more general and can generalize to species not
included in the training set (Fig. 5g). Altogether, these results show that SegmentNT can be easily
extended to additional genomics elements and species, which opens up promising new research di-
rections to be explored in future work.
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Figure 5  - Segment-NT generalises across species
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Discussion

SegmentNT is an extension of the DNA foundation model NT towards predicting the location of sev-
eral types of genomics elements in DNA sequences up to 50kb at nucleotide resolution. We show top
performance for genic elements, including splice sites, and how each element depends on different
context windows. For a given 50kb sequence, SegmentNT makes 700,000 predictions at once in less
than one millisecond allowing to annotate any input sequence in a very efficient way. SegmentNT
trained on the human genome can already generalize to other species, but to make SegmentNT more
broadly applicable to annotate sequences from different species we developed a multispecies version
that improves generalization to unseen species. We make our best models (SegmentNT-30kb human
and multispecies) available on our github repository and HuggingFace space.

SegmentNT provides strong evidence that DNA foundation models can tackle complex tasks in ge-
nomics at single-nucleotide resolution. Up until now, there is no consensus for the benefit of pre-
trained foundation models for genomics. There has been limited improvements on most tasks where
these models have been evaluated on [21, 22, 23, 25, 47, 43]. Here we focused on a more challenging
task of segmenting genomc elements in DNA sequences at nucleotide resolution. Our results show
that the highest performance is achieved by combining a pre-trained NT and a segmentation U-Net
head, when compared with applying such segmentation architectures directly from one-hot encoded
DNA sequences. This is a strong evidence for the value added by such pre-trained models and points
to the need of expanding their applications and evaluations to more realistic tasks in genomics.

A current limitation of DNA foundation models is their limited context length. NT was the pre-
trained model with the largest context length at its time, trained on sequences of up to 12kb [22].
Since then different approaches have been proposed to extend the context of such models, mostly by
relying on novel state-space architectures to avoid the quadratic scaling of Transformers [23, 48, 44].
Here we took a different approach and extended the context of SegmentNT through context-length
extrapolation in both training and evaluation phases, showing improved performance for sequences
up to 50kb (see also [43]). We expect that extending the context of NT and SegmentNT models to
longer sequences with efficient context-extension approaches will yield further improvements for
DNA segmentation tasks. Many techniques have recently emerged in fields like natural language
processing that manage to increase the input length of Transformer models to process hundreds of
thousands of tokens at a time [49, 50, 51, 52]. These approaches together with the new developments
of state-space models provide promising avenues to build the next generation of models.

We observed lower performance for the segmentation of promoter and enhancer regulatory elements
compared with genic elements. Indeed, the sequence code of human regulatory elements is vastly
more complex and unstructured, where for example the same element can encode different syntax
in different cell types [53]. To account for some of this complexity we have split promoters and
enhancers in tissue-invariant and tissue-specific classes each, and observed different predictive per-
formances between the groups. In future work we expect that splitting promoters and enhancers
by their specific cell types should allow the model to learn the different cell type-specific regulatory
codes thus improving the performance on regulatory element prediction.

An important result of our work is the demonstration that SegmentNT trained on human genomics
elements can generalize to unseen species. The generalization is stronger for splice sites and exons,
likely due to their high conservation. In addition, we observed reduced generalization for species
with longer divergence times to human. To improve the generalization to more distant species, we
developed a SegmentNT-multispecies version that shows improved performance on unseen species.
Thus, this model can be leveraged to annotate sequences up to 50kb of any species de novo which
should be useful to explore the genomes of less-characterized species.

Overall, our work has several direct applications. First, the finetuned DNA encoder within Seg-
mentNT should provide stronger representations of human genomics elements and could be used to
improve performance on downstream tasks [54]. Second, interpreting the representations learned
by SegmentNT could reveal insights about the genome and its encoded information. Third, the ac-
curacy of SegmentNT predictions can be leveraged to evaluate the impact of sequence variants on
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the different types of genomics elements, as we showed for splicing isoforms. Thanks to the ex-
tended sequence context and the prediction of several types of genomics elements, we foresee im-
portant applications for the analysis of cancer genomes and their large structural variants. Fourth,
SegmentNT-multispecies can be directly applicable to annotate and explore the genomes of different
species. Fifth, SegmentNT’s architecture can be easily applied to additional genomics annotations or
nucleotide-level experimental data. Increasing the number of channels per nucleotides predicted by
SegmentNT to include data coming from multiple experiments and biological processes should im-
prove the transfer between tasks and lead to generalisation in a way similar to the segment anything
model for images [55]. We ultimately hope that SegmentNT can be a useful tool for the genomics
community and foster new developments in our understanding of the genome code.
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Methods

A Genome segmentation model

In this section, we introduce our approach to segment the genome, namely SegmentNT. We formulate
this problem as the segmentation of a sequence of N nucleotides (for example N = 3,000 bp, 3kb, or
N = 10,000 bp, 10kb) by predicting a probability for each nucleotide to be part of one of K = 14
elements: protein-coding gene, lncRNA, 5’UTR, 3’UTR, exon, intron, splice donor site, splice acceptor
site, polyA signal, promoter tissue-invariant, promoter tissue-specific, enhancer tissue-invariant, enhancer
tissue-specific or CTCF-bound.

A.1 SegmentNT architecture

Nucleotide Transformer (NT) can be used as a backbone for segmenting a sequence of nucleotides.
SegmentNT uses the pre-trained NT-Multispecies-v2 (500M) model as DNA encoder to extract em-
beddings for each of the tokens yielded by a 6-mer tokenizer. We note N the number of nucleotides
in the DNA sequence and L the number of DNA tokens (with roughly L ≈ N/6). In order to segment
the sequence, we replace its original language model head by a 1-dimensional U-Net segmentation
head [33] made of 2 downsampling convolutional blocks and 2 upsampling convolutional blocks.
Each of these blocks is made of 2 convolutional layers with 2,048 and 4,096 kernels respectively,
and L/2 and L/4 sequence length. This accounts for 63 million parameters. The output of this layer
is a N ×K × 2 dimensional vector which gives K probabilities for each nucleotide corresponding to
the probability that the nucleotide is part of each type of genomics element. We do not add further
constraints on predictions such as the fact that one nucleotide belongs only to one element, and thus
each nucleotide can be part of multiple elements.

A.2 Model training and evaluation

We train our model using Adam optimizer with lr = 5e−5. We use a batch size of 256 and trained the
SegmentNT-3kb model for 10.24B tokens, meaning a total of 20.48M sequences seen during training.
The training was done on a cluster of 8 GPU H100 over 20 hours. The 10kb, 20kb and 30kb models
were initialized from the best checkpoint of the respective smaller model for faster adaptation to
longer lengths. For example, SegmentNT-30kb model was initialized with the best SegmentNT-20kb
checkpoint and finetuned for an additional 2.56B tokens (0.51M sequences). We use focal loss [34]
with γ = 2 which helps the model to focus on ”harder” samples, ie the sparse nucleotides that belong
to an element.

We split our dataset between train, validation and test sets by chromosome. Namely, chromosomes
20 and 21 are used for test, chromosome 22 is used for validation and the remaining are used for
training. During training, sequences are randomly sampled in the genome with associated annota-
tions. We keep the sequences in the validation and test sets fixed by using a sliding window of length
N over the respective chromosomes. The validation set was used to monitor training and for early
stopping while the test set was used to evaluate model performance. We used Matthews correlation
coefficient (MCC) as a validation metric and selected the best checkpoint based on the average score
across all 14 genomics elements. During evaluation and testing, we predict for each sequence K
probabilities per nucleotide, concatenate all predictions across all sequences into a single array per
element predicted, and compute MCC and Precision-Recall Area Under the Curve (PR-AUC) for each
genomics element over every nucleotide.

A.3 Comparison of different architectures

SegmentNT is made of a DNA encoder, Nucleotide Transformer, and a 1-dimensional U-Net seg-
mentation head, as described above. To evaluate the added value of using a pre-trained backbone
encoder, we compared it on the 3kb sequences with (1) two versions of the U-Net segmentation head
alone, with 63M and 252M parameters respectively, which take one-hot encoded DNA sequences as
input instead of the embeddings outputted by the DNA encoder; and (2) a SegmentNT model whose
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encoder is initialized with random weights. Since when using one-hot encoded input sequences there
is no aggregation of the base pairs into 6-mers, the input to the first convolutional layers of the U-Net
model has a length of L = 3,000 one-hot encoded base pairs instead of 500 token embeddings. As
with the SegmentNT models, we monitor the training by validating on sequences from chromosome
22 and selected the best checkpoint based on the highest average MCC score across the 14 types of
elements. For the randomly initialized SegmentNT model, we stopped training before this criteria
was met because the training took significantly longer time and the performance on most of the ge-
nomics elements had plateaued. The 63M and 252M U-Net models converged after 14.3M and 18.4M
sequences respectively, just before the SegmentNT-3kb model at 20.4M sequences. However, to reach
this point, they take 12 hours and 36 hours respectively against 20 hours for SegmentNT-3kb.

A.4 Context Length Extension

Since the DNA encoder of SegmentNT is using rotary positional embeddings (RoPE) that have been
trained on a maximum sequence length of 2,048 tokens, its performance degrades very quickly when
inferring on longer sequences. Several previous works have suggested adaptations to RoPE to better
handle evaluation or fine-tuning on longer sequences, such as using Position Interpolation ([56, 57])
or ”NTK-aware” scaled Rope [58]. More recently, [42] formalized different methods and augmented
them to propose a final adaptation of RoPE to unseen lengths called YaRN. After testing the different
approaches, YaRN did not introduce improvements to extending Segment-NT lengths compared to
simply using ”NTK-aware” RoPE. Since the latter is lighter to implement we decided to use it for
extending the context of SegmentNT.

As described by Pend et al. [42], with the hidden layer set of hidden neurons denoted by D, and a
sequence of vectors x1, ...xL ∈ R|D |, ”NTK-aware” RoPE can be described by the following equation:

f ′w(xm,m,θd) = fw(xm, g(m),h(θd))

where d is the position along the embedding dimension, m is the position of the embedding in the

sequence, f is the RoPE function (detailed in Eq.1 of [56]), g(m) = m, h(θd) = b′−2d/ |D |, b′ = b.s
|D |
|D |−2 and

finally 2π
θd

= 2πb
2d
|D | . The rescaling factor s is computed as s = L′

L with L′ the extended context length
and L the training context length, which for the NT-Multispecies-v2 (500M) is 2048 tokens.

For SegmentNT models trained with ”NTK-aware” RoPE, all sequences with length inferior to their
training length are evaluated with the same rescaling factor that was used during the training. Con-
cretely, SegmentNT-30kb is trained with s = 2.44, and therefore inference on a sequence smaller than
30,000bp is done with s = 2.44. When evaluated on a 50kb sequence, the rescaling factor becomes
s = 4.07.

A.5 Multi-species training

We trained an additional, multispecies model (SegmentNT-10kb-multispecies) by finetuning the hu-
man SegmentNT-10kb model on the annotations of five species together (mouse, chicken, fly, ze-
brafish and worm). We used the same model hyperparameters and training parameters. Since the
different species have different genome sizes, we balanced examples from each dataset with the fol-
lowing weights: 5 for human, 4 for mouse, 2 for chicken, fly and zebrafish, and 1 for worm. Similar
to the human dataset, we split the chromosomes of each species intro training, validation and test
set.

B Genome annotation data

B.1 Human genomics elements

The human segmentation dataset of genomics elements was created from 14 types of elements, di-
vided in gene elements (protein-coding genes, lncRNAs, 5’UTR, 3’UTR, exon, intron, splice acceptor
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and donor sites) and regulatory elements (polyA signal, tissue-invariant and tissue-specific promot-
ers and enhancers, and CTCF-bound sites). The final segmentation dataset was created by overlap-
ping all 14 elements with every DNA sequence of length N nucleotides. Sequences with Ns were
removed.

The location of all gene elements and polyA signals were obtained from GENCODE [38] V44 gene an-
notation. Annotations were filtered to exclude level 3 transcripts (automated annotation), so all train-
ing data was annotated by a human. We used extract splice sites.py from HISAT2 [59] (https://
github.com/DaehwanKimLab/hisat2/blob/master/hisat2_extract_splice_sites.py) to extract
respective intron and splice site annotations.

Promoter, enhancer and CTCF-bound sites were retrieved from ENCODE’s SCREEN database (https:
//screen.wenglab.org/) [40]. Distal and proximal enhancers were combined. Promoters and en-
hancers were split in tissue-invariant and tissue-specific based on the vocabulary from Wouter Meule-
man et al. [60] https://www.meuleman.org/research/dhsindex/. Enhancers or promoters overlap-
ping regions classified as tissue-invariant were defined as that, while all other enhancers and promot-
ers were defined as tissue-specific.

B.2 Multi-species dataset

To create segmentation datasets for additional species we focused only on the main gene elements:
protein-coding genes, 5’UTR, 3’UTR, exon, intron, splice acceptor and donor sites. We obtained their
annotations as described for the human dataset but retrieved from Ensembl databases (https://
www.ensembl.org). We considered 5 species to train the multispecies model: mouse (mm10), chicken
(galGal6), fly (dm6), zebrafish (danRer11) and worm (ce11). We created a held-out test set made of
12 species: gorilla (gorGor4), macaque (Mnem 1), rat (mRatBN7), beaver (can genome v1), chinchilla
(ChiLan1), whale (ASM228892v3), cat (Felis catus 9), canary (SCA1), tetradon (T ETRAODON8),
anemonefish (AmpOce1), trout (f SalT ru1) and Ciona intestinalis (KH). Evolutionary distance data
was retrieved from Timetree of Life.

C Benchmarking for regulatory elements

C.1 Sliding Nucleotide Transformer finetuned models

We first compared SegmentNT-10kb with a sliding window approach, where a binary classifier is
used to predict the output probability for multiple sliding windows of the input 10kb DNA sequence.
We applied this approach for the segmentation of the two best classes of regulatory elements: pro-
moter tissue-invariant and enhancer tissue-specific. As binary classifier we used the NT finetuned
models on promoter and enhancer, respectively [22]. Sliding windows were created using a step size
of 10 and the input size of the respective promoter (300nt) and enhancer (200nt) models. All infer-
ence times were calculated in a single A100 GPU.

C.2 Comparison with Enformer zero-shot predictions

We also compared SegmentNT with Enformer [16] for promoter predictions. Here we ported En-
former to our Jax codebase for a more direct comparison (previously done in [22]). For each 10kb
input sequence, we padded the sequences as requested by the model input dimensions and com-
puted all Enformer predictions at the original 128bp bin resolution and used the average over 7
selected ATAC-seq profiles for different human cell lines as quantitative score of regulatory activity.
We report the PR-AUC metric for the predictive value of this quantitative score to identify promoters
at nucleotide resolution. All inference times were calculated in a single A100 GPU.
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D Splicing tasks

D.1 Comparison with SpliceAI

We compared SegmentNT with SpliceAI [36] on both SpliceAI’s test set and SegmentNT’s test set
given their different settings. We used the scripts available at the Illumina Basespace platform 1 to
reproduce the testing dataset presented in SpliceAI for both 10kb and 30kb input sequences without
additional context. This test set contains only mRNA sequences and all in the forward strand (i.e. for
genes in the reverse strand, the sequence is reversed to have the gene in the forward orientation). We
also compared both models on the SegmentNT’s 10kb and 30kb test sets, which contain all windows
of the test chromosomes, including windows without genes or with genes in both the forward and
reverse strand. We used as performance metrics both PR-AUC and MCC.

D.2 Sequence variants and transcript isoforms

We used data from an experimental saturation mutagenesis splicing assay of the exon 11 of the gene
MST1R, flanked by constitutive exons 10 and 12 and respective introns (data from Braun, Simon, et
al. [45]; see Methods). This dataset contains a library of almost 5,800 randomly mutated minigenes
of ∼700nt, where for each minigene variant it was evaluated the splicing of the alternative exon 11
in the respective mRNA molecules. We used this data to test if SegmentNT could predict the impact
of those sequence variants on the respective splicing and transcript isoforms. We focused only on
minigene variants composed of combinations of single-nucleotide mutations. We predicted all 14
genomics elements in the wildtype minigene sequence and all minigene variants. For a systematic
comparison, we compared the predicted exon score for the region of the alternative exon 11 with the
experimentally measured exon inclusion scores.

Data availability

The SegmentNT training data was obtained from publicly available resources. Gene annotations
were obtained from GENCODE (https://www.gencodegenes.org/) and Ensembl databases (https:
//www.ensembl.org). Human regulatory elements were obtained from ENCODE’s SCREEN database
(https://screen.wenglab.org/). Evolutionary distance data was retrieved from Timetree of Life.

Code availability

Model weights of the human and multispecies SegmentNT models as well as inference code in Jax are
available for research purposes at https://github.com/instadeepai/nucleotide-transformer.
HuggingFace versions of the models, in PyTorch, can be found at https://huggingface.co/InstaDeepAI.
Example notebooks are available on Google Colab at https://colab.research.google.com/github/
instadeepai/nucleotide-transformer/blob/main/examples/inference_segment_nt.ipynb.
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Supplementary Figure 1 - Data distribution

a b

c Number of regions per element type

Supplementary Figure 1: Data distribution per element type. a) Percentage of sequences containing each element
type in train and test 10kb dataset. b) Percentage of nucleotides containing each element type in train and test 10kb
dataset. c) Number of regions per element type in the human annotation.
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Supplementary Figure 4 - Extending Segment-NT-10kb input 
context with Yarn
a b

c d

Supplementary Figure 2: Context-length extension allows to rescale SegmentNT-10kb to 100kb sequences. a)

Average MCC performance across the 14 elements for the SegmentNT-10kb model with and without context-length
rescaling. b-d) Performance on different input lengths without vs with context-length extension.
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Supplementary Figure 3 - Evaluating Segment-NT models on 
different lengths
a

c

b

Supplementary Figure 3: Evaluating Segment-NT models on different lengths. a) Long-range models improve
performance on longer contexts while maintaining performance on shorter contexts. Average MCC performance
across the 14 elements for the different SegmentNT models per input sequence length. b) Same as in (a) but coloured
by the difference to the best model per input sequence length. c) Heatmap with MCC performance per genomics
element.
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Supplementary Figure 3 - Comparison with SpliceAI on SpliceAI 
and Segmentation test set 10kb sequences
a b

Supplementary Figure 4: Comparison with SpliceAI on test set 10kb sequences. b) Performance of SpliceAI and
SegmentNT-30kb for splice acceptor and donor detection on SpliceAI’s gene-centric test set of 10kb sequences. We
used as metric the PR-AUC. c) Performance of SpliceAI and SegmentNT-30kb for splice acceptor and donor detection
as well as exon and intron prediction on SegmentNT’s whole chromosome test set of 10kb sequences. We used as
metric the MCC and report performance for all regions (left), or regions containing genes only in the positive (middle)
or negative strand (right).
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Supplementary Figure 5: Prediction of sequence variants affecting splicing isoforms. a) SegmentNT prediction
of gene elements of RON exon11 minigene wildtype sequence. b-c) SegmentNT prediction for a minigene variant
leading to (b) higher exon inclusion and (c) higher exon skipping. Predictions for exon/intron (top) and splice sites
(middle) are shown. Nucleotide mutations in each minigene variant are shown with black stars. Bottom bar-plot
shows the experimental differences in isoform abundance relative to the wildtype minigene sequence. d) Scatter-
plot comparing SegmentNT’s exon prediction and the inclusion of the alternative exon 11 (AE) across all minigene
variants. Pearson and Spearman correlation coefficients and p-values are shown.
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Supplementary Figure 6 - Multispecies generalisation
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Supplementary Figure 6: Comparison of human and multispecies SegmentNT models. a-b) Performance of the
human (H) and multispecies (MS) model per element for (a) training set species and (b) test set species.
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