
3D Deep Learning for Biological Function Prediction
from Physical Fields

Vladimir Golkov ∗,1, Marcin J. Skwark ∗,2,3, Atanas Mirchev 1, Georgi Dikov 1,
Alexander R. Geanes 3, Jeffrey Mendenhall 3, Jens Meiler 3 and Daniel Cremers 1

1 Technical University of Munich, Germany
2 InstaDeep, London, United Kingdom

3 Vanderbilt University, Nashville, TN, USA
golkov@cs.tum.edu, m.skwark@instadeep.com, {atanas.mirchev, georgi.dikov}@tum.de,

{alexander.r.geanes, jeffrey.l.mendenhall, jens.meiler}@vanderbilt.edu,
cremers@tum.de

Abstract

Predicting the biological function of molecules, be it proteins or drug-like com-
pounds, from their atomic structure is an important and long-standing problem.
Function is dictated by structure, since it is by spatial interactions that molecules
interact with each other, both in terms of steric complementarity, as well as inter-
molecular forces. Thus, the electron density field and electrostatic potential field of
a molecule contain the “raw fingerprint” of how this molecule can fit to binding
partners. In this paper, we show that deep learning can predict biological function
of molecules directly from their raw 3D approximated electron density and electro-
static potential fields. Protein function based on EC numbers is predicted from the
approximated electron density field. In another experiment, the activity of small
molecules is predicted with quality comparable to state-of-the-art descriptor-based
methods. We propose several alternative computational models for the GPU with
different memory and runtime requirements for different sizes of molecules and
of databases. We also propose application-specific multi-channel data representa-
tions. With future improvements of training datasets and neural network settings in
combination with complementary information sources (sequence, genomic context,
expression level), deep learning can be expected to show its generalization power
and revolutionize the field of molecular function prediction.

1 Introduction

Recent developments in experimental techniques for life sciences allow for studying a vast array
of properties and characteristics of biologically relevant molecules. We can elucidate structures
of proteins and small molecules, their composition (in terms of amino acid sequences and atoms),
abundance and localization in the cells, to name just a few such traits. Most of these experimental
efforts serve one purpose though – uncovering the function the molecule carries out in the living
organism. Both for proteins and small molecules, the function can be described in terms of the effect
that the molecule has on its interaction partners. This can in turn be expressed in terms of spatial
interactions, such as lock-and-key model of ligand affinity or enzyme specificity (based on spatial
complementarity).

While elucidating the structures of biomolecules becomes easier, experimental function annotation
remains elusive. According to UniProtKB, out of over 74 million proteins in the database just
89 thousand have experimentally determined function, 393 thousand have been labelled with a
function by a human expert and only ~12% (9 million) have been annotated in any form, be it by
human or by a computer algorithm.



Analogously, PubChem (one of the largest databases of drug-like molecules and their bioactivity
assays) contains over 93 million compounds, but only 1.2 million experimental assays in which one or
more of the compounds have been tested against one of ~10 thousand protein targets or ~20 thousand
gene targets. Bearing in mind that a single compound can act on multiple targets and a single protein
can be a target of many compounds, it is evident that this database is far from being comprehensive.

1.1 Non-structure-based function prediction

While the function is dictated by structure, it is not always necessary to know the full, atomic structure
of the compound to be able to infer the function. For example, protein function prediction methods
use numerous sources of information in combination. In addition to the amino acid sequence (primary
structure), one can use evolutionary information (homologs of known function), sequence information
inferred from genome (genomic context), gene co-expression, proteomic assays (including protein-
protein interaction), as well as data from genetic assays and clinical observations, as summarized in
an overview of numerous state-of-the-art methods [Jiang et al., 2016].

1.2 Structure-based function prediction

1.2.1 Related work

There are many possibilities to represent information about molecule structure, and to feed it into a
function prediction method.

For quantitative structure-activity relationship (QSAR) modeling, chemical structures are often
numerically encoded with hand-made descriptors that describe chemical properties, topology or
atomic connectivity, and spatial geometry of the molecule [Sliwoski et al., 2014]. Scalar descriptors
include molecular properties, such as molecular weight and the octanol-water partition coefficient
(LogP). Topological descriptors encode the connectivity of the molecule, examples of which in-
clude substructure-matching schemes and bond distance histograms such as 2D autocorrelation
functions [Sliwoski et al., 2016]. Geometrical descriptors include radial distribution and 3D autocor-
relation functions which calculate histograms of interatomic distances within a molecule, or encoding
coefficients of the spherical harmonics which best describe the shape of the molecule [Baumann, 2002,
Wang et al., 2011]. Topological and geometrical descriptors are often weighted by atomic properties
such as partial charge or polarizability to describe the spatial and topological distributions of these
properties as well. Most of descriptors either do not require a three-dimensional conformation of the
molecule, or else a single low-energy conformation is used for their calculation. Four-dimensional
descriptors have also been described which aim to encode some dynamical properties of molecules,
such as multiple conformations [Andrade et al., 2010], in addition to the properties described above.

For proteins, on the other hand, approaches to representing the structure are two-fold, either
coordinate-based or topology-based. The first ones denote the positions of all the amino acids
in Cartesian space, either by coordinates of atoms or of pseudoatoms (larger entities representing a
group of atoms). Coordinate-based representations are immediately interpretable, as they comprise
sufficient information to easily position all the objects in three-dimensional space. The functional
relationships within the protein, though, are better captured by representations taking into account
the mutual proximity of the objects (amino acids, atoms. . . ). Such approaches have been widely
adopted in the field, ranging from directly enumerating distances between bodies (often within a
certain cutoff), through enumerating the bodies that are in spatial proximity (in contact, within a
certain distance threshold) according to a certain metric, to purely neighborhood-based measures
(such as the ones dictated by Voronoi tesselation) [Dupuis et al., 2005]. Through these measures it
is straightforward to tell which bodies (atoms, amino acids. . . ) interact, but exceedingly difficult to
reconstruct the original structure, if the original distances have not been preserved.

The method most similar to ours – using 3D representations directly as inputs to the neural network –
is AtomNet [Wallach et al., 2015]. Its details and differences to our method are described below in
Section 1.2.3.
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Figure 1: Four of 70 z-slices from the two-channel 70× 70× 70× 2 representation of an active M1

muscarinic receptor agonist (from dataset PubChem SAID 1798): approximated electron density
field (top) and electrostatic potential field (bottom; positive potential in blue, negative in red). These
physical fields characterize how this molecule can spatially fit to other molecules (binding partners).
We thus propose using these fields directly as input to the 3D convolutional network.

1.2.2 Motivation for proposed structure-based method

At a microscopic level, the electromagnetic force governs interactions between molecules of any
shape or size and in particular it is responsible for the binding affinities of small molecules to proteins
or for enzyme function. A classical description of molecular structure usually differentiates two major
subsets of electromagnetic interactions, namely electrostatic forces (often described by an electrostatic
potential) and van der Waals or steric interactions [Israelachvili., 2011]. Electrostatic forces are
longer-range attractive or repulsive effects which are a result of charge imbalances between atoms,
that establish partial positive and negative charges in different regions of the molecular structure.
Van der Waals interactions are a shorter-range effect which may be either attractive, due to transient
dipoles in the electron clouds, or repulsive, due to an overlap of the electron clouds of molecules.
Van der Waals effects are therefore determined by the electron-dense regions around a molecule
which effectively determine its shape and play an important role in determining binding interactions.
Variations of electrostatic potential and electron densities are often used to computationally describe
molecular interactions at a classical level, such as in molecular dynamics calculations [Salomon-
Ferrer et al. , 2013, Brooks et al., 1983, Alper and Levy, 1989]. Together these two properties make
up a majority of what two interaction partners “see” of each other. In other words, electron density
(or its estimate) and electrostatic potential are major determining factors of the molecular function.
This is why we propose using these fields directly as inputs to the function prediction method.

The common theme in related work is that nearly all methods that use known (or predicted) structural
information for function prediction extract handcrafted features. These transformations discard part
of the information contained in the original data, very likely to the detriment of subsequent analysis.
Lessons learned from the success of deep learning in numerous areas of application [Krizhevsky
et al., 2012, Golkov et al., 2016, Wang et al., 2017] consistently indicate that deep learning can
deal with the entire known raw information and learn the data transformation that is optimal for
the task at hand. The multi-layer (deep) data transformations applied to the raw data are optimized
jointly in view of the final goal (such as classification), formulated as the cost function of the neural
network. The output error is back-propagated through all neural network layers, i.e. optimizes the
transformations at all layers. In most cases, such automatically optimized transformations strongly
outperform handcrafted ones. We therefore explore the deep learning approach to molecular function
prediction.
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1.2.3 Differences between AtomNet and proposed method

To our knowledge, the only similar method is AtomNet [Wallach et al., 2015]. It uses various 3D
grid representations of small molecules for bioactivity prediction. The main differences between
AtomNet and our approach are the following:

• AtomNet requires a 3D co-complex of the molecule in question with its binding target,
whereas our method infers the function of the molecule from the shape of the molecule
alone.

• The version of AtomNet that uses the enumeration of atom types in a 3D grid only im-
plicitly provides the information about the possibilities for physical interactions with other
molecules, whereas our representation of the molecule via its approximate electron density
and electrostatic potential 3D grids is a rawer, more direct representation of how other
molecules “perceive” the molecule in question, and in what ways they can physically in-
teract. Besides, the enumeration of atom types in a discrete grid without anti-aliasing
introduces imprecisions, partially discarding information about the exact relative positions
of the atoms, whereas the usage of anti-aliasing for atom enumeration or the voxel-wise esti-
mation of electron density and electrostatic potential are unaffected by discretization-based
imprecisions.

• The version of AtomNet that uses handcrafted chemical descriptors such as SPLIF [Da and
Kireev, 2014], SIFt [Deng et al., 2004], or APIF [Pérez-Nueno et al., 2009] brings along
the aforementioned disadvantages of handcrafted features, whereas we provide the entire
physical information required to extract relevant chemical and physical properties.

• Besides small molecules, we also present protein function prediction using 3D deep learning,
demonstrating the robustness of our approach.

• The network architecture of our approach differs from the one of AtomNet in the following
ways: (a) it contains max-pooling layers, thus encouraging the learning of invariances (cf.
below); (b) our network has more convolutional layers. The overall architecture is based on
the work of Simonyan and Zisserman [2015].

2 Methods

2.1 Input representation

Electron density of a molecule cannot be easily computed based on the coordinates alone, but can be
approximated based on the positions of atoms and their van der Waals radii. Approximate electron
density and electrostatic potential are calculated on a Cartesian grid. For small-molecule experiments,
the field of view is 35Å × 35Å × 35Å at a resolution of 0.5Å, i.e. 71 × 71 × 71 voxels. An
example is shown in Fig. 1. For protein experiments, the field of view is 127Å× 127Å× 127Å at a
resolution of 2Å, i.e. 64× 64× 64 voxels, for low-resolution experiments, and a resolution of 1Å,
i.e. 128× 128× 128 voxels, for high-resolution experiments.

The approximate electron density used herein is emphatically not the true, noisy one measured by
X-ray crystallography or electron microscopy. The experimental data can be used directly, but this
remains to be the subject of future research. Instead, we use an estimate of the idealized electron
density obtained from the atom coordinates. The electron density is estimated using a Gaussian
kernel around the atom center with the van der Waals radius as its bandwidth. Using electron density
from physical experiments directly is in principle also possible.

The electrostatic potential of small molecules is estimated by computing the partial charges of
the atoms using the Gasteiger-Marsili PEOE (Partial Equalization of Orbital Electronegativities)
algorithm [Gasteiger and Marsili, 1978].

Protein experiments were performed using approximated electron density only, without electrostatic
potential, for several reasons. Firstly, the computation of partial charges for proteins requires
employing one of several non-trivial algorithms, all of which are fraught with substantial degree of
error. The comparison of the effect of these methods on the results of 3D deep learning is subject of
future work. Secondly, individual amino acid types have a paramount effect on the partial charges,
and amino acid types can be inferred from the approximated electron density alone. Thus, due to
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Figure 2: Eight z-slices of approximate protein electron density field in a 21-channel representation.
The backbone and each residue type have individual channels (shown as 21 colors) for the electron
density of respective atoms. This novel protein-specific representation helps the neural network to
distinguish the amino acid types directly.

the limited vocabulary of structural motifs in proteins, “electrostatic motifs” can be learned from
“electron density motifs”.

To additionally simplify the recognition of structural motifs and to make use of the limited vocabulary
of amino acid residues, we propose an alternative multi-channel input representation. Instead
of computing the approximated electron density of the entire protein in a Cartesian 64 × 64 × 64
voxel grid (or 128× 128× 128 for high-resolution experiments), we separate the atoms by the 20
amino acid residue types they belong to and calculate the approximated electron density (Gaussian
kernel) 3D maps for each residue type separately, yielding 20 channels, i.e. a 64 × 64 × 64 × 20
array. An additional channel is used for the electron density of backbone atoms, the 21 channels thus
summing up to the overall approximated electron density. These 21 channels are shown in Fig. 2.
Furthermore, one additional channel is used for hydrogen atoms due to their role in hydrogen bonds,
influencing molecular function, and a complementary channel for heavy-atom electron density, the
two latter channels also summing up to the overall approximated electron density. Finally, another
channel holds the approximated electron density for all atoms, providing three-fold redundancy, but
also a disentangled information representation amenable to learning relevant deep feature extractors.
The overall input size is thus 64 × 64 × 64 × 24. The three spatial dimensions are used for 3D
convolutional layers, and the fourth dimension represents the channels, i.e. the voxel-wise features.

We encourage rotation-invariance by training, i.e. by using data augmentation, in this case random
rotations and translations of the molecule when creating the Cartesian grid of the physical fields.
This trains the neural network to produce similar output for a certain molecule regardless of its
position and orientation in space. Furthermore, data augmentation prevents overfitting and facilitates
generalization, since unimportant (“overfittable”) features such as a specific orientation of the
molecule (and associated local “voxel value motifs”) are never repeated during training, whereas
structural invariants relevant for predicting molecular function are maintained.

2.2 Input computation pipeline

Where possible, we perform computations on the graphical processing unit (GPU) due to speed
concerns – not only the deep learning training, but also the computation of the inputs (3D maps). In
our implementation with Lasagne [Dieleman et al., 2015] and Theano [Al-Rfou et al., 2016] software
libraries, data generation and data augmentation are seamlessly integrated into the processing as
“layers” of the neural network.

In cases of large molecules and/or large numbers of molecules, the database may not fit into GPU
memory. We therefore propose different pipelines with the molecule database in the GPU memory
(Fig. 3a) or CPU memory (Fig. 3b–c). Moreover, the computation of 3D maps is a bottleneck in case
of large molecules. Thus, we also propose a pipeline where the 3D maps are pre-computed in one
orientation, stored in a file, and rotated for purposes of data augmentation during training (Fig. 3c),
resulting in slight interpolation artifacts, but retaining the important physical information.

We use the all-GPU pipeline (Fig. 3a) for QSAR and the fast large-molecule pipeline (Fig. 3c) for
protein function prediction.

2.3 Neural network architecture

Protein function is dictated by the shape of the active site (as represented in the physical 3D maps),
as well as the folds (evolutionary families) and relative positions of the domains of the protein. The
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Figure 3: We propose three versions of the pipeline, addressing different needs. The all-GPU
pipeline (a) is appropriate if the molecule database fits into GPU memory, for example in the case
of small molecules. The large-database pipeline (b) can be applied to the study of proteins; its
bottleneck is the slow computation of 3D maps. To circumvent this bottleneck, the fast large-database
pipeline (c) precomputes the 3D maps only once.

overall structure of active sites and domains can be inferred from local structural motifs and their
higher-level global composition.

The method should therefore have the following properties:

1. Translation-covariance of low-level feature extraction

2. Locality of low-level feature extraction

3. Hierarchical feature extraction from localized and simple to larger and more abstract

4. Rotation-invariance

The first three points are ensured by employing convolutional neural networks. The fourth point is
taken care of by random rotations during training.

The four-dimensional (3D × channels) feature maps a(l) in a 3D convolutional layer l are computed
according to the operation

a(l)xyzc = σ

b(l)c +
∑
x̂ŷẑk

w
(l)
x̂ŷẑkca

(l−1)
x+x̂,y+ŷ,z+ẑ,k

 , (1)

where a(l−1) are the activations of the previous layer, b(l) the biases and W(l) the weights trained by
error backpropagation such that the objective function is optimized, and σ is the nonlinearity, in our
case the leaky rectified linear unit [Maas et al., 2013] defined as σ(z) = max{0.01x, x}.
The neural network architecture is closely based on a design practice popularized by Simonyan and
Zisserman [2015], proposing the usage of very small convolutional filters, achieving certain receptive
window sizes through increased depth of the network (allowing more elaborate data transformations)
rather than large filters. Pooling layers increase the receptive window size; they encourage (but do not
enforce) the learning of invariance to slight distance changes, slight translations and slight rotations;
and they contribute to a higher level of feature abstraction, model regularity (generalizability) and
computational tractability. We use 3D convolutional filters of size 3× 3× 3, interspersed with 3D
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Figure 4: Schematic of the neural network architecture used in most experiments, with visualized
activations (feature maps) after training. Only a fraction of slices and channels is shown (with
consistency across layers). The outputs do not have to sum up to 1 because one sample can belong to
several classes (and therefore sigmoid rather than softmax was used as the nonlinearity in the output
layer).
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(a) Validation accuracy history (b) Validation loss history

Figure 5: Accuracy history (a) for protein function prediction: EC 3.4.21.- (serine proteases) vs. EC
3.4.24.- (cysteine proteases). Early stopping (magenta line) is performed when the all-time average
validation set accuracy stops improving. This early stopping criterion is meaningful also in terms of
validation loss (b), avoiding overfitting and variance.

pooling layers of size 2×2×2, analogously to 2D operations in the work of Simonyan and Zisserman
[2015]. The network architecture and activation maps are shown in Fig. 4.

The network has an output unit for each predicted class. The output nonlinearity is the sigmoid

σ(z) =
1

1 + e−z
(2)

(rather than the softmax function common in classification), so that molecules with several functions
can be modeled in a straightforward manner by setting several output targets to 1 for the same sample
(where 0 or 1 represents class membership). The corresponding loss (objective) function for C classes
is the binary cross-entropy between predictions y and respective targets t, summed for all classes:

L =

C∑
c=1

−tc log yc − (1− tc) log(1− yc). (3)

Training is performed using the Adam algorithm [Kingma and Ba, 2015] with a learning rate of 10−4,
mini-batch size 2, 4 or 8 for different resolutions and GPUs. Early stopping (Fig. 5a) is performed
when the average validation accuracy stops improving; the average is taken since the beginning of the
training.

We use the VoxNet implementation [Maturana and Scherer, 2015a,b] of 3D convolutional and 3D
pooling layers. Generation and augmentation of 3D molecule maps are directly integrated with the
Lasagne/Theano-based neural network training (cf. Section 2.2 and Fig. 3).

2.4 Data

For protein function prediction, we use the Enzyme Structures Database1, which lists PDB structures
for enzymes classified by the EC (Enzyme Commission) number hierarchy, designating enzyme
specificity and mode of action.

In the first experiment, we perform classification on two classes of enzymes acting on a peptide
bond (peptidases): serine proteases (EC 3.4.21.-) and cysteine proteases (EC 3.4.24.-). Proteins
in both classes perform the same task of cleaving a peptide bond, but differ in terms of catalytic
mechanism. Both classes contain proteins that do not necessarily share evolutionary history (i.e.
are not necessarily homologous) and therefore do not always share the same structure (fold). The
characteristic that proteins within either of the classes share is the same functional mechanism, which
may have emerged in the course of convergent evolution.

In another larger-scale experiment, we perform classification of all 166 third-level EC classes against
each other, i.e. EC 1.1.1.- vs. EC 1.1.2.- vs. . . . vs. EC 6.6.1.-. We experiment with two different

1https://www.ebi.ac.uk/thornton-srv/databases/enzymes/
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methods of splitting samples into training and test sets. By naive split, we refer to randomly assigning
samples (PDB entries) to the training or test set. A more challenging task is function prediction with
a strict split at the fourth EC level, meaning that if e.g. a sample in EC 3.4.21.1 (chymotrypsin) gets
randomly assigned to the test set, then all other entries in this fourth-level class also get assigned to
the test set and none of them to the training set. Thus, it is tested whether the neural network can
correctly predict chymotrypsins (EC 3.4.21.1) to belong to the class of serine proteases (EC 3.4.21.-),
based solely on information inferred from other subclasses of EC 3.4.21.-, such as subtilisin, thrombin
or trypsin, but no samples from chymotrypsin class.

In each training/test split, we select 25% of the samples for the test set (consistently across experiments
of the same splitting method). Additional 25% are picked randomly as a validation set to perform
early stopping during training in order to prevent overfitting (cf. Figs. 5a–5b). The remaining 50% of
the data are used for training.

For the small-molecule QSAR task, we use a dataset of M1 muscarinic receptor agonists and inactive
componds (PubChem SAID 1798) that were annotated with their activity in a respective assay. We
attempt to classify the molecules into the active/inactive categories, reserving 20% of the data for
testing, and training on the other 80%.

3 Results

The receiver operating characteristic (ROC) for discriminating between serine and cysteine proteases,
i.e. classifying EC 3.4.21.- against EC 3.4.24.- with the naive training/test split is shown in Fig. 6a.
For low-resolution experiments, the area under the ROC curve (AUC) of 0.91 with single-channel
inputs and 0.97 with multi-channel inputs indicates a high quality of prediction and suggests that high
accuracy protein function prediction from 3D maps is feasible. Moreover, doubling the resolution
in each dimension, i.e. using 128 × 128 × 128 voxels in lieu of 64 × 64 × 64 voxels, further
increases the AUC to 0.94 for single-channel and 0.99 for multi-channel experiments. Thus, both
of the high-resolution settings outperform the corresponding low-resolution settings; and both of
the multi-channel settings outperform the respective single-channel setting. This indicates that the
high-resolution data representation and the multi-channel data representation (and both together)
contain valuable information for this task. However, the naive split entails that both test and training
set most probably contain proteins from the same evolutionary family, thus making the learning task
substantially easier.

(a) Naive split (b) Strict split

Figure 6: ROC for protein function prediction: EC 3.4.21.- (vs. EC 3.4.24.-) with naive split (a) and
strict split (b). The multi-channel input representation outperforms the respective single-channel
settings. The proposed 3D input representation provides meaningful information about the molecules
under the naive split and even under the challenging strict split.
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Figure 7: Confusion matrix for classification of the 166 third-level EC classes. The pronounced
diagonal means correct prediction for the majority of test samples.

ROC for the same classes with a strict training/test split is shown in Fig. 6b. The AUC=0.56 for
single-channel inputs is much lower than for the naive split, confirming that the strict split – inferring
protein function only based on other protein families sharing same function – is a considerably
harder problem. However, the AUC=0.66 for multi-channel inputs also shows that the multi-channel
representation of protein structure is beneficial for facilitating the extraction of information about
protein function.

With the strict split, increasing the resolution of the data does not strongly influence the AUC, and
in case of the multi-channel inputs leads to decrease in predictive power. It is however important to
note that increasing the resolution notably improves the expected number of true positives before
encountering a false positive (left part of ROC curve; for both single- and multi-channel methods with
naive split, as well as for single-channel for strict split). This signifies that the network given improved
resolution learns to recognize crucial structural features of individual classes. The subsequent, mid-
range drop in accuracy can, in our opinion, be attributed to insufficient amount of data in the training
set, which prevents the network from generalizing properly. This is also the reason for sub-par
performance of the method in “high resolution, multi-channel” regime.

It is however evident from Figures 6a and 6b that introduction of additional channels denoting the
amino acid types substantially improves the expected prediction accuracy. In our opinion, this allows
the network to easier attain the knowledge on structural and functional properties of amino acids,
which it would have to learn in training. By introducing additional channels, we alleviate this need. It
is evident that analogous effect could have been achieved by pretraining the networks with a larger
data corpus, which we will demonstrate in subsequent work. Therefore, we postulate that in the limit
of infinite (or at least sufficiently abundant) data, performance of “single-channel” and “multi-channel”
approaches would converge.

The confusion matrix for the classification of the 166 third-level EC classes with naive train/test split
is shown in Fig. 7. The diagonal (correct predictions) is highly pronounced, indicating that our deep
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(a) Normalized histogram of predictions (neural network
outputs) for active and inactive small molecules (b) ROC (AUC=0.70)

Figure 8: Results for small-molecule QSAR. Predictions (a) demonstrate some separability of active
and inactive small molecules from the test set. The ROC (b) has an AUC=0.70 approximately equal
to that of state-of-the-art descriptor-based methods applied to this dataset (PubChem SAID 1798).

learning approach stably distinguishes the correct class from the 165 other possible classes of proteins
in many cases, which is a challenging task requiring the representation of numerous function-specific
structural features within the neural network. Each class had a slightly different AUC in the test data;
the AUC of the individual classes averaged across all classes was 0.87± 0.13 on the test data.

The ROC curve for biological activity classification of M1 muscarinic receptor antagonists is shown
in Figure 8b. Models trained on this dataset achieved an AUC=0.70. This value indicates that the
models were capable of differentiating molecules which exhibited biological activity from those that
did not at a rate substantially higher than random chance. The AUC value found here is approximately
equal to that of state-of-the-art methods based on hand-crafted descriptors applied to the same
dataset [Mendenhall and Meiler, 2016]. A further demonstration of the performance of the model can
be seen in Figure 8a, which highlights a substantial gap between mode scores for the two classes of
compounds.

These results are both interesting and encouraging given that state-of-the-art models utilize descriptors
and network architectures that are specifically optimized for biological activity prediction. The
performance of the models reported here indicates that the chosen approximations for describing
molecular structure are already capable of encoding information that is equally valuable to what is
found in the hand-crafted descriptors. Further refinement of both molecular structure description and
network parameters are likely to boost the performance above what is seen here. Additionally, these
models illustrate that deep learning can be a powerful tool even in domains where the data sets are
much smaller and more heavily unbalanced than those seen in more traditional applications of deep
learning.

As noted in [Mendenhall and Meiler, 2016], the goal of biological activity prediction is often to
prioritize a large set of compounds in order to select a small subset for physical testing, thereby
making those compounds with the highest scores the most important from a practical standpoint.
These models were trained with a loss function designed to optimize the overall AUC of the ROC
curves (i.e. from false positive rate (FPR) values of 0 to 1) which effectively aims to best separate
the two classes from each other as a whole. However, this metric does not consider the performance
of the highest scoring samples, and as seen in Figure 8a, the highest-scoring active compound is
separated from the highest-scoring inactive compound by a small fraction of the score range. Given
these promising early results, approaching this problem with a loss function designed to optimize
compound scores at low FPR values (e.g. the logAUC metric described in [Mendenhall and Meiler,
2016]) would provide a straightforward way to improve the performance of these models in a manner
beneficial for practical QSAR application.
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4 Discussion and Conclusions

In this work we have demonstrated the utility of 3D convolutional neural networks for discriminating
between molecules in terms of their function in living organisms. They allow for accurate classifica-
tion of proteins, without relying on domain (expert) knowledge or evolutionary data. Additionally,
use of the 3D convolutional neural networks for classifying small molecules permits for achieving
comparable degree of accuracy as state-of-the-art QSAR methods, while obviating the need for
handcrafted descriptors.

The data on protein classification presented above was based purely on enzymes, but it is highly
plausible that these results generalize to the entire protein space. The success in discriminating be-
tween vastly different enzyme classes strongly indicates that this approach allows for high-confidence
discrimination between different functional classes (transporters, structural proteins, immunoglobu-
lins. . . ). Discriminating within a class (e.g. dopamine receptor from a glucagon receptor) should be
possible as well, as demonstrated by serine vs. cysteine protease experiment.

The classification experiments presented above are to be treated as proof-of-concept. While we
demonstrated the applicability of convolutional neural networks for these purposes, we do acknowl-
edge that the predictive power of these methods can only increase when supplemented with additional
features, used by the other methods in the respective fields. For purposes of protein function predic-
tion, one could easily improve expected prediction accuracy by extending the feature set by such
ones as presence of common sequence motifs, structural classification (annotated or predicted) and
homology-derived information. The small-molecule classification can be augmented by experi-
mentally determined features (e.g. logP, polarizability. . . ) and ones derived from the structure (e.g.
constitutional descriptors, fragment counts. . . ). While the latter can be learned from the data itself, it
may prove beneficial to provide them explicitly.

Notably, this work does not consider the fact that the vast majority of molecules in living organisms
is conformationally flexible. It is possible to generate multiple conformers of small molecules, for the
QSAR use case, but it is not intuitively obvious what effect will it have on the training of the method.
By using generated conformations as actives one would inadvertently introduce false positives in the
training set (i.e. conformations in which the ligand does not bind would be labeled as positives), but
on the other hand it would allow the network to recognize also potentially active ligands, even if they
were in an unsuitable conformation. For protein function prediction, conformational flexibility plays
a less major role, but distinction between apo (without bound ligand) and holo (with ligand bound)
structures in the training process could potentially play a role for the expected predictive power.

While the protein function prediction part of this work relied on experimental structural data, these
methods can also be applied to predicted protein structures. It could be advisable to limit the
prediction to the active site only, thus allowing for much faster training and predictions, and enabling
meta-prediction using multiple variant active sites.

The other potential use case is to use experimental electron density directly, without the need
for fitting atoms within. Recent developments in the area of direct imaging, especially electron
microscopy, make such methods particularly relevant. As in its current form our method does not
depend on any sequence-related data, it is immediately applicable to such problems. This could
enable high-confidence function annotation of proteins recovered from environmental samples.

These are just a few of potential application domains for the methods we propose. By avoiding
human-derived, handcrafted descriptors they allow to capture the features of the studied molecules
that are truly important for functional considerations. On contrary to these descriptors, they will only
increase in accuracy with the growing amount of data. On contrary to methods based on structural
comparison, the methods we proposed do not require superposition and are translation and rotation
invariant. We postulate therefore that deep learning methods of inferring functional information
from raw spatial 3D data will increase in importance, with the growing amounts of spatial biological
information and increased resolutions of direct imaging methods.
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