
Implementing and solving a multiplayer
snake game environment using self-play
Lawrence Francis

MOTIVATION
The primary motivation behind this project is to assess the behaviour that agents
acquire in a multiplayer snake game environment when trained using a
reinforcement learning algorithm with self-play. Also, this project tries to tackle
the challenge termed Slitherin’[5] in the openai's "request for research 2.0".

Conclusion
In a simple multi-agent environment, agents can learn interesting behaviours
when trained with self-play. In this multiplayer snake game, one unusual
behaviour observed is that of curling around fruits in wait for other snakes. In
future work, the entire grid could be an agent’s observation, making the policy
network to take in an image as input.

REFERENCES
1 . Felix Crevier, Sebastien Dubois and Sebastien Levy, “Multiplayer snake AI”
cs221 project final report, 2016.
2 . Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever and Igor
Mordatch, “Emergent complexity via multi-agent competition” arXiv preprint
arXiv:1710.03748
3 . Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel and Igor Mordatch,
“Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments”
4 . Joshua Achiam, “Spinning up”, https://spinningup.openai.com
5 . “Request for research 2.0”, https://openai.com/blog/requests-for-research-2/
6 . John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

RELATED WORKS
Several works have been done to address the multiplayer snake game and of
course, self-play. In a project, called "Multiplayer Snake AI", The performance
and inherent behaviour of using adversarial search and reinforcement learning
algorithms (Q-learning) to solve the multiplayer snake game environment was
analysed[1]. Also, the work on competitive self-play by openai yielded
tremendous results as agents learned complex behaviours in a simple
environment with sparse rewards[2]. However, there has not been any use of
self-play for the multiplayer snake game.

THE AGENT
In this multi-agent setting, the environment is solved with self-play. The
reinforcement learning algorithm used is PPO(Proximal Policy Optimization)[6].
The policy network is an MLP that takes in an agent's observation as input and
probability over 3 actions as output. The agent's observation forms a
7-dimensional vector when concatenated. 'Rewards to go' was used instead of a
value network (critic).

Learned Behaviour:
When 2 agents were trained with exploration curriculum, they both learnt to
always go for the nearest fruit and avoid the walls and each other when in range.
For 2 agents, when trained without exploration curriculum, One agent learnt to
always chase and eat the fruits while the other learnt to run towards the fruits
without actually eating any (probably for the fear of the other agent's presence)
with the goal of taking out the other agent when it comes around.
For 4 agents, 2 of the agents learnt to curl around a fruit, preventing other agents
from eating that particular fruit and causing them to die by collision when they
attempt to eat the fruit. The other 2 agents learnt to always chase the fruit.

Figure 3: plot showing the average return
at each epoch for all training experiments.

Figure 1: The Slitherin’ game environment. (a) The environment showing 4
snakes, and fruits. (b) The red snake’s observation; A = obstacles at agent’s
head, B = closest food position relative to agent’s head, C = closest opponent’s
head position relative to agent’s head.

THE ENVIRONMENT
The environment, built with pygame as a Gym environment, consists of a 40x40
2D grid with fruits and snakes. Snakes increase in length when they eat(collide
against) fruits and a new fruit appears at a random grid position whenever any
fruit is eaten. Snakes die when they collide with the walls, themselves or other
snakes. When a snake dies, it turns into fruits. The game ends when all snakes
die.
An agent's observation is designed in such a way that it always seems to be
moving northward. This gives it a choice of just 3 actions; turn left, turn right, and
keep straight. An observation, for an agent, is a tuple consisting of the obstacles
in front of and beside its head position, closest opponent’s position relative to the
head and closest food position relative to the head.
An agent gets a reward of +30 when it eats a fruit and -100 if it dies. The
environment is solved with an overall score of 500 for 2 agents and 1000 for 4
agents.

(a) The game environment (b) The red snake’s
observation

Red snake’s observation:
(A,B,C)

A = (0,0,0)
B = (2, -9)

C = (-3, -12)

Figure 2: The policy network (actor), πᶿ(a|s).
An MLP with 1 hidden layer with 4 neurons.
Input is agent’s observation, A, B,
and C concatenated.

